These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

463 related articles for article (PubMed ID: 17358227)

  • 1. Fractality in complex networks: critical and supercritical skeletons.
    Kim JS; Goh KI; Salvi G; Oh E; Kahng B; Kim D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jan; 75(1 Pt 2):016110. PubMed ID: 17358227
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Skeleton and fractal scaling in complex networks.
    Goh KI; Salvi G; Kahng B; Kim D
    Phys Rev Lett; 2006 Jan; 96(1):018701. PubMed ID: 16486532
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Betweenness centrality of fractal and nonfractal scale-free model networks and tests on real networks.
    Kitsak M; Havlin S; Paul G; Riccaboni M; Pammolli F; Stanley HE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 May; 75(5 Pt 2):056115. PubMed ID: 17677141
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Geometric fractal growth model for scale-free networks.
    Jung S; Kim S; Kahng B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 May; 65(5 Pt 2):056101. PubMed ID: 12059641
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A box-covering algorithm for fractal scaling in scale-free networks.
    Kim JS; Goh KI; Kahng B; Kim D
    Chaos; 2007 Jun; 17(2):026116. PubMed ID: 17614703
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Scale-free trees: the skeletons of complex networks.
    Kim DH; Noh JD; Jeong H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Oct; 70(4 Pt 2):046126. PubMed ID: 15600479
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The phylogeny of persistence in DNA.
    Poland D
    Biophys Chem; 2004 Dec; 112(2-3):233-44. PubMed ID: 15572254
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dismantling efficiency and network fractality.
    Im YS; Kahng B
    Phys Rev E; 2018 Jul; 98(1-1):012316. PubMed ID: 30110770
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Overlapping-box-covering method for the fractal dimension of complex networks.
    Sun Y; Zhao Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Apr; 89(4):042809. PubMed ID: 24827295
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Critical phase of bond percolation on growing networks.
    Hasegawa T; Nemoto K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 May; 81(5 Pt 1):051105. PubMed ID: 20866183
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Betweenness centrality in a weighted network.
    Wang H; Hernandez JM; Van Mieghem P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Apr; 77(4 Pt 2):046105. PubMed ID: 18517688
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Elastic properties of small-world spring networks.
    Ramezanpour A; Vaez Allaei SM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Dec; 72(6 Pt 2):066115. PubMed ID: 16486018
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-similarity of complex networks.
    Song C; Havlin S; Makse HA
    Nature; 2005 Jan; 433(7024):392-5. PubMed ID: 15674285
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reciprocal relation between the fractal and the small-world properties of complex networks.
    Kawasaki F; Yakubo K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Sep; 82(3 Pt 2):036113. PubMed ID: 21230145
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Degree-dependent intervertex separation in complex networks.
    Dorogovtsev SN; Mendes JF; Oliveira JG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 May; 73(5 Pt 2):056122. PubMed ID: 16803013
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modified box dimension and average weighted receiving time on the weighted fractal networks.
    Dai M; Sun Y; Shao S; Xi L; Su W
    Sci Rep; 2015 Dec; 5():18210. PubMed ID: 26666355
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Disassortativity of random critical branching trees.
    Kim JS; Kahng B; Kim D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jun; 79(6 Pt 2):067103. PubMed ID: 19658628
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exact scaling properties of a hierarchical network model.
    Noh JD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Apr; 67(4 Pt 2):045103. PubMed ID: 12786419
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Anomalous percolation properties of growing networks.
    Dorogovtsev SN; Mendes JF; Samukhin AN
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Dec; 64(6 Pt 2):066110. PubMed ID: 11736239
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synchronization transition of heterogeneously coupled oscillators on scale-free networks.
    Oh E; Lee DS; Kahng B; Kim D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jan; 75(1 Pt 1):011104. PubMed ID: 17358107
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.