These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 17358293)

  • 1. Fractional Fokker-Planck dynamics: stochastic representation and computer simulation.
    Magdziarz M; Weron A; Weron K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jan; 75(1 Pt 2):016708. PubMed ID: 17358293
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fractional Fokker-Planck equation with tempered α-stable waiting times: langevin picture and computer simulation.
    Gajda J; Magdziarz M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jul; 82(1 Pt 1):011117. PubMed ID: 20866575
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Competition between subdiffusion and Lévy flights: a Monte Carlo approach.
    Magdziarz M; Weron A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 May; 75(5 Pt 2):056702. PubMed ID: 17677193
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fractional Fokker-Planck dynamics: Numerical algorithm and simulations.
    Heinsalu E; Patriarca M; Goychuk I; Schmid G; Hänggi P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Apr; 73(4 Pt 2):046133. PubMed ID: 16711904
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Non-Linear Langevin and Fractional Fokker-Planck Equations for Anomalous Diffusion by Lévy Stable Processes.
    Anderson J; Moradi S; Rafiq T
    Entropy (Basel); 2018 Oct; 20(10):. PubMed ID: 33265849
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Subdiffusive master equation with space-dependent anomalous exponent and structural instability.
    Fedotov S; Falconer S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Mar; 85(3 Pt 1):031132. PubMed ID: 22587063
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Fokker-Planck equation of the superstatistical fractional Brownian motion with application to passive tracers inside cytoplasm.
    Runfola C; Vitali S; Pagnini G
    R Soc Open Sci; 2022 Nov; 9(11):221141. PubMed ID: 36340511
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonlinear Kinetics on Lattices Based on the Kinetic Interaction Principle.
    Kaniadakis G; Hristopulos DT
    Entropy (Basel); 2018 Jun; 20(6):. PubMed ID: 33265516
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Numerical approach to the fractional Klein-Kramers equation.
    Magdziarz M; Weron A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Dec; 76(6 Pt 2):066708. PubMed ID: 18233944
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stochastic dynamics from the fractional Fokker-Planck-Kolmogorov equation: large-scale behavior of the turbulent transport coefficient.
    Milovanov AV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Apr; 63(4 Pt 2):047301. PubMed ID: 11308983
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analytic description of anomalous diffusion in heterogeneous environments: Fokker-Planck equation without fractional derivatives.
    Likhomanova P; Kalashnikov I
    Phys Rev E; 2020 Aug; 102(2-1):022108. PubMed ID: 32942441
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Time-fractional Caputo derivative versus other integrodifferential operators in generalized Fokker-Planck and generalized Langevin equations.
    Wei Q; Wang W; Zhou H; Metzler R; Chechkin A
    Phys Rev E; 2023 Aug; 108(2-1):024125. PubMed ID: 37723675
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fractional Fokker-Planck equation for fractal media.
    Tarasov VE
    Chaos; 2005 Jun; 15(2):23102. PubMed ID: 16035878
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Equivalence of the fractional Fokker-Planck and subordinated Langevin equations: the case of a time-dependent force.
    Magdziarz M; Weron A; Klafter J
    Phys Rev Lett; 2008 Nov; 101(21):210601. PubMed ID: 19113398
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stochastic calculus for uncoupled continuous-time random walks.
    Germano G; Politi M; Scalas E; Schilling RL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jun; 79(6 Pt 2):066102. PubMed ID: 19658559
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transport in time-dependent random potentials.
    Krivolapov Y; Fishman S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 1):051115. PubMed ID: 23214746
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microscopic theory of anomalous diffusion based on particle interactions.
    Lutsko JF; Boon JP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Aug; 88(2):022108. PubMed ID: 24032776
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gaseous microflow modeling using the Fokker-Planck equation.
    Singh SK; Thantanapally C; Ansumali S
    Phys Rev E; 2016 Dec; 94(6-1):063307. PubMed ID: 28085383
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Invariance principle and model reduction for the Fokker-Planck equation.
    Karlin IV
    Philos Trans A Math Phys Eng Sci; 2016 Nov; 374(2080):. PubMed ID: 27698039
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fractional diffusion in a periodic potential: Overdamped and inertia corrected solutions for the spectrum of the velocity correlation function.
    Kalmykov YP; Titov SV; Coffey WT
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 1):041101. PubMed ID: 22680414
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.