These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 17358319)

  • 1. Gravitational dynamics of an infinite shuffled lattice of particles.
    Baertschiger T; Joyce M; Gabrielli A; Labini FS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Feb; 75(2 Pt 1):021113. PubMed ID: 17358319
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gravitational dynamics of an infinite shuffled lattice: early time evolution and universality of nonlinear correlations.
    Baertschiger T; Joyce M; Labini FS; Marcos B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 May; 77(5 Pt 1):051114. PubMed ID: 18643033
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Force distribution in a randomly perturbed lattice of identical particles with 1/r2 pair interaction.
    Gabrielli A; Baertschiger T; Joyce M; Marcos B; Labini FS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Aug; 74(2 Pt 1):021110. PubMed ID: 17025396
    [TBL] [Abstract][Full Text] [Related]  

  • 4. One-dimensional gravity in infinite point distributions.
    Gabrielli A; Joyce M; Sicard F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Oct; 80(4 Pt 1):041108. PubMed ID: 19905274
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gravitational dynamics of an infinite shuffled lattice: Particle coarse-graining, nonlinear clustering, and the continuum limit.
    Baertschiger T; Joyce M; Gabrielli A; Sylos Labini F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jul; 76(1 Pt 1):011116. PubMed ID: 17677419
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gravitational evolution of a perturbed lattice and its fluid limit.
    Joyce M; Marcos B; Gabrielli A; Baertschiger T; Sylos Labini F
    Phys Rev Lett; 2005 Jul; 95(1):011304. PubMed ID: 16090603
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two-point correlation properties of stochastic splitting processes.
    Gabrielli A; Joyce M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Mar; 77(3 Pt 1):031139. PubMed ID: 18517361
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Global picture of self-similar and non-self-similar decay in Burgers turbulence.
    Noullez A; Gurbatov SN; Aurell E; Simdyankin SI
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 May; 71(5 Pt 2):056305. PubMed ID: 16089647
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anomalous local coordination, density fluctuations, and void statistics in disordered hyperuniform many-particle ground states.
    Zachary CE; Torquato S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 May; 83(5 Pt 1):051133. PubMed ID: 21728516
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phase transitions in self-gravitating systems: self-gravitating fermions and hard-sphere models.
    Chavanis PH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 May; 65(5 Pt 2):056123. PubMed ID: 12059663
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tagged particle correlations in the asymmetric simple exclusion process: finite-size effects.
    Gupta S; Majumdar SN; Godrèche C; Barma M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Aug; 76(2 Pt 1):021112. PubMed ID: 17930011
    [TBL] [Abstract][Full Text] [Related]  

  • 12. One-dimensional "turbulence" in a discrete lattice.
    Daumont I; Peyrard M
    Chaos; 2003 Jun; 13(2):624-36. PubMed ID: 12777127
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monte Carlo study of the droplet formation-dissolution transition on different two-dimensional lattices.
    Nussbaumer A; Bittner E; Janke W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Apr; 77(4 Pt 1):041109. PubMed ID: 18517580
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Soft-core particles freezing to form a quasicrystal and a crystal-liquid phase.
    Archer AJ; Rucklidge AM; Knobloch E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jul; 92(1):012324. PubMed ID: 26274178
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Particles sliding on a fluctuating surface: phase separation and power laws.
    Das D; Barma M
    Phys Rev Lett; 2000 Aug; 85(8):1602-5. PubMed ID: 10970568
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diffusion of interacting particles in discrete geometries: Equilibrium and dynamical properties.
    Becker T; Nelissen K; Cleuren B; Partoens B; Van den Broeck C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Nov; 90(5-1):052139. PubMed ID: 25493771
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Classical evolution of fractal measures on the lattice.
    Antoniou NG; Diakonos FK; Saridakis EN; Tsolias GA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Apr; 75(4 Pt 1):041111. PubMed ID: 17500869
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonequilibrium dynamics of random field Ising spin chains: exact results via real space renormalization group.
    Fisher DS; Le Doussal P; Monthus C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Dec; 64(6 Pt 2):066107. PubMed ID: 11736236
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamics of spinodal decomposition in finite-lifetime systems: Nonlinear statistical theory based on a coarse-grained lattice-gas model.
    Ishikawa A; Ogawa T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Feb; 65(2 Pt 2):026131. PubMed ID: 11863611
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterizing pixel and point patterns with a hyperuniformity disorder length.
    Chieco AT; Dreyfus R; Durian DJ
    Phys Rev E; 2017 Sep; 96(3-1):032909. PubMed ID: 29346987
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.