These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 17358409)

  • 1. Desynchronization waves in small-world networks.
    Park K; Huang L; Lai YC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Feb; 75(2 Pt 2):026211. PubMed ID: 17358409
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Desynchronization waves and localized instabilities in oscillator arrays.
    Restrepo JG; Ott E; Hunt BR
    Phys Rev Lett; 2004 Sep; 93(11):114101. PubMed ID: 15447341
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synchronization landscapes in small-world-connected computer networks.
    Guclu H; Korniss G; Novotny MA; Toroczkai Z; Rácz Z
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jun; 73(6 Pt 2):066115. PubMed ID: 16906922
    [TBL] [Abstract][Full Text] [Related]  

  • 4. From Kardar-Parisi-Zhang scaling to explosive desynchronization in arrays of limit-cycle oscillators.
    Lauter R; Mitra A; Marquardt F
    Phys Rev E; 2017 Jul; 96(1-1):012220. PubMed ID: 29347255
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Insensitive dependence of delay-induced oscillation death on complex networks.
    Zou W; Zheng X; Zhan M
    Chaos; 2011 Jun; 21(2):023130. PubMed ID: 21721772
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Perturbation analysis of complete synchronization in networks of phase oscillators.
    Tönjes R; Blasius B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Aug; 80(2 Pt 2):026202. PubMed ID: 19792226
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synchronized clusters in coupled map networks. I. Numerical studies.
    Jalan S; Amritkar RE; Hu CK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jul; 72(1 Pt 2):016211. PubMed ID: 16090070
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synchronization transition of heterogeneously coupled oscillators on scale-free networks.
    Oh E; Lee DS; Kahng B; Kim D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jan; 75(1 Pt 1):011104. PubMed ID: 17358107
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ordering chaos by random shortcuts.
    Qi F; Hou Z; Xin H
    Phys Rev Lett; 2003 Aug; 91(6):064102. PubMed ID: 12935078
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Turbulence in small-world networks.
    Cosenza MG; Tucci K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Mar; 65(3 Pt 2A):036223. PubMed ID: 11909228
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Amplitude death in networks of delay-coupled delay oscillators.
    Höfener JM; Sethia GC; Gross T
    Philos Trans A Math Phys Eng Sci; 2013 Sep; 371(1999):20120462. PubMed ID: 23960220
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Onset of synchronization in complex networks of noisy oscillators.
    Sonnenschein B; Schimansky-Geier L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 May; 85(5 Pt 1):051116. PubMed ID: 23004712
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synchronization and spatiotemporal patterns in coupled phase oscillators on a weighted planar network.
    Kagawa Y; Takamatsu A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Apr; 79(4 Pt 2):046216. PubMed ID: 19518321
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stochastic resonance on weakly paced scale-free networks.
    Perc M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Sep; 78(3 Pt 2):036105. PubMed ID: 18851103
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diffusion-induced instability and chaos in random oscillator networks.
    Nakao H; Mikhailov AS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Mar; 79(3 Pt 2):036214. PubMed ID: 19392042
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synchronous patterns in complex systems.
    Fu C; Zhang H; Zhan M; Wang X
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 2):066208. PubMed ID: 23005197
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heterogeneity in oscillator networks: are smaller worlds easier to synchronize?
    Nishikawa T; Motter AE; Lai YC; Hoppensteadt FC
    Phys Rev Lett; 2003 Jul; 91(1):014101. PubMed ID: 12906539
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synchronization and desynchronization in a network of locally coupled Wilson-Cowan oscillators.
    Campbell S; Wang D
    IEEE Trans Neural Netw; 1996; 7(3):541-54. PubMed ID: 18263453
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synchronization in small-world systems.
    Barahona M; Pecora LM
    Phys Rev Lett; 2002 Jul; 89(5):054101. PubMed ID: 12144443
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonequilibrium transitions in complex networks: a model of social interaction.
    Klemm K; Eguíluz VM; Toral R; San Miguel M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Feb; 67(2 Pt 2):026120. PubMed ID: 12636761
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.