These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 17358872)

  • 1. Effects of the orientational distribution of cracks in solids.
    Giordano S; Colombo L
    Phys Rev Lett; 2007 Feb; 98(5):055503. PubMed ID: 17358872
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effective Spring Stiffness for a Planar Periodic Array of Collinear Cracks at an Interface between Two Dissimilar Isotropic Materials.
    Lekesiz H; Katsube N; Rokhlin SI; Seghi RR
    Mech Mater; 2011 Feb; 43(2):87-98. PubMed ID: 23710104
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fracture of disordered solids in compression as a critical phenomenon. II. Model Hamiltonian for a population of interacting cracks.
    Toussaint R; Pride SR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Sep; 66(3 Pt 2A):036136. PubMed ID: 12366213
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Elastic wave scattering by a fluid-saturated circular crack and effective properties of a solid with a sparse distribution of aligned cracks.
    Song Y; Hu H; Han B
    J Acoust Soc Am; 2019 Jul; 146(1):470. PubMed ID: 31370637
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface tension and a self-consistent theory of soft composite solids with elastic inclusions.
    Mancarella F; Wettlaufer JS
    Soft Matter; 2017 Feb; 13(5):945-955. PubMed ID: 28078332
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Explicit relations between elastic and conductive properties of materials containing annular cracks.
    Sevostianov I
    Philos Trans A Math Phys Eng Sci; 2003 May; 361(1806):987-99. PubMed ID: 12804225
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stochastic mechanical degradation of multi-cracked fiber bundles with elastic and viscous interactions.
    Manca F; Giordano S; Palla PL; Cleri F
    Eur Phys J E Soft Matter; 2015 May; 38(5):131. PubMed ID: 25998172
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The zero-frequency component of bulk waves in solids with randomly distributed micro-cracks.
    Sun X; Liu H; Zhao Y; Qu J; Deng M; Hu N
    Ultrasonics; 2020 Sep; 107():106172. PubMed ID: 32450428
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonlinear effects of micro-cracks on long-wavelength symmetric Lamb waves.
    Rjelka M; Köhler B; Mayer A
    Ultrasonics; 2018 Nov; 90():98-108. PubMed ID: 29940396
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Constitutive equations for an elastic material with anisotropic rigid particles.
    Sagis LM; Ramaekers M; van der Linden E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 May; 63(5 Pt 1):051504. PubMed ID: 11414906
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A micromechanical approach for homogenization of elastic metamaterials with dynamic microstructure.
    Muhlestein MB; Haberman MR
    Proc Math Phys Eng Sci; 2016 Aug; 472(2192):20160438. PubMed ID: 27616932
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effect of the interaction of cracks in orthotropic layered materials under compressive loading.
    Winiarski B; Guz IA
    Philos Trans A Math Phys Eng Sci; 2008 May; 366(1871):1841-7. PubMed ID: 18218599
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular theory of elastic constants of liquid crystals. III. Application to smectic phases with tilted orientational order.
    Singh Y; Ram J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Nov; 64(5 Pt 1):051705. PubMed ID: 11735943
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of Eshelby-Cheng's model in anisotropic porous cracked medium: An ultrasonic physical modeling approach.
    Nascimento MJS; de Figueiredo JJS; da Silva CB; Chiba BF
    Ultrasonics; 2020 Mar; 102():106037. PubMed ID: 31678643
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rhenium diboride's monocrystal elastic constants, 308 to 5 K.
    Suzuki Y; Levine JB; Migliori A; Garrett JD; Kaner RB; Fanelli VR; Betts JB
    J Acoust Soc Am; 2010 May; 127(5):2797-801. PubMed ID: 21117729
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Orientational ordering of hard zigzag needles in one dimension.
    Gurin P; Varga S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Oct; 82(4 Pt 1):041713. PubMed ID: 21230301
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cracks in Tension-Field Elastic Sheets.
    Mahmood O; Audoly B; Roux S
    Phys Rev Lett; 2018 Oct; 121(14):144301. PubMed ID: 30339428
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effective spring stiffness for a periodic array of interacting coplanar penny-shaped cracks at an interface between two dissimilar isotropic materials.
    Lekesiz H; Katsube N; Rokhlin SI; Seghi RR
    Int J Solids Struct; 2013 Aug; 50(18):2817-2828. PubMed ID: 27175036
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In-plane time-harmonic elastic wave motion and resonance phenomena in a layered phononic crystal with periodic cracks.
    Golub MV; Zhang C
    J Acoust Soc Am; 2015 Jan; 137(1):238-52. PubMed ID: 25618055
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling and simulation of liquid-crystal elastomers.
    Zhu W; Shelley M; Palffy-Muhoray P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 May; 83(5 Pt 1):051703. PubMed ID: 21728552
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.