These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 17358972)

  • 1. Fractionalization into merons in quantum dots.
    Petković A; Milovanović MV
    Phys Rev Lett; 2007 Feb; 98(6):066808. PubMed ID: 17358972
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of Landau level mixing on the fractional quantum Hall effect in monolayer graphene.
    Peterson MR; Nayak C
    Phys Rev Lett; 2014 Aug; 113(8):086401. PubMed ID: 25192110
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spectral properties of rotating electrons in quantum dots and their relation to quantum Hall liquids.
    Koskinen M; Reimann SM; Nikkarila JP; Manninen M
    J Phys Condens Matter; 2007 Feb; 19(7):076211. PubMed ID: 22251598
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transport through graphene quantum dots.
    Güttinger J; Molitor F; Stampfer C; Schnez S; Jacobsen A; Dröscher S; Ihn T; Ensslin K
    Rep Prog Phys; 2012 Dec; 75(12):126502. PubMed ID: 23144122
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dirac electrons in graphene-based quantum wires and quantum dots.
    Peres NM; Rodrigues JN; Stauber T; Lopes Dos Santos JM
    J Phys Condens Matter; 2009 Aug; 21(34):344202. PubMed ID: 21715777
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction-induced spin polarization in quantum dots.
    Rogge MC; Räsänen E; Haug RJ
    Phys Rev Lett; 2010 Jul; 105(4):046802. PubMed ID: 20867873
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spin fractionalization of an even number of electrons in a quantum Dot.
    Giuliano D; Tagliacozzo A
    Phys Rev Lett; 2000 May; 84(20):4677-80. PubMed ID: 10990769
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantum dots with disorder and interactions: a solvable large-g limit.
    Murthy G; Shankar R
    Phys Rev Lett; 2003 Feb; 90(6):066801. PubMed ID: 12633315
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrafast optical control of individual quantum dot spin qubits.
    De Greve K; Press D; McMahon PL; Yamamoto Y
    Rep Prog Phys; 2013 Sep; 76(9):092501. PubMed ID: 24006335
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spin states in graphene quantum dots.
    Güttinger J; Frey T; Stampfer C; Ihn T; Ensslin K
    Phys Rev Lett; 2010 Sep; 105(11):116801. PubMed ID: 20867593
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spin excitations in an anisotropic bond-alternating quantum s = 1 chain in a magnetic field: contrast to haldane spin chains.
    Hagiwara M; Regnault LP; Zheludev A; Stunault A; Metoki N; Suzuki T; Suga S; Kakurai K; Koike Y; Vorderwisch P; Chung JH
    Phys Rev Lett; 2005 May; 94(17):177202. PubMed ID: 15904331
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct measurement of the spin-orbit interaction in a two-electron InAs nanowire quantum dot.
    Fasth C; Fuhrer A; Samuelson L; Golovach VN; Loss D
    Phys Rev Lett; 2007 Jun; 98(26):266801. PubMed ID: 17678116
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantum dots with Rashba spin-orbit coupling.
    Governale M
    Phys Rev Lett; 2002 Nov; 89(20):206802. PubMed ID: 12443496
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Landau-level mixing and the emergence of Pfaffian excitations for the 5/2 fractional quantum Hall effect.
    Wójs A; Toke C; Jain JK
    Phys Rev Lett; 2010 Aug; 105(9):096802. PubMed ID: 20868183
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transport and current noise characteristics of a T-shape double-quantum-dot system.
    Brown K; Crisan M; Tifrea I
    J Phys Condens Matter; 2009 May; 21(21):215604. PubMed ID: 21825553
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nonadiabatic pumping through interacting quantum dots.
    Cavaliere F; Governale M; König J
    Phys Rev Lett; 2009 Sep; 103(13):136801. PubMed ID: 19905533
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-particle and collective excitations in quantum wires made up of vertically stacked quantum dots: zero magnetic field.
    Kushwaha MS
    J Chem Phys; 2011 Sep; 135(12):124704. PubMed ID: 21974549
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Random matrix theory for closed quantum dots with weak spin-orbit coupling.
    Held K; Eisenberg E; Altshuler BL
    Phys Rev Lett; 2003 Mar; 90(10):106802. PubMed ID: 12689023
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantum phase transition and underscreened Kondo effect in electron transport through parallel double quantum dots.
    Ding GH; Ye F; Dong B
    J Phys Condens Matter; 2009 Nov; 21(45):455303. PubMed ID: 21694008
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reduction of the sign problem using the meron-cluster approach.
    Bergkvist S; Henelius P; Rosengren A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jul; 68(1 Pt 2):016122. PubMed ID: 12935215
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.