These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Complex organizing centers in groups of oscillatory particles. Tinsley MR; Taylor AF; Huang Z; Showalter K Phys Chem Chem Phys; 2011 Oct; 13(39):17802-8. PubMed ID: 21915397 [TBL] [Abstract][Full Text] [Related]
3. Perturbation analysis of the Kuramoto phase-diffusion equation subject to quenched frequency disorder. Tönjes R; Blasius B Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jan; 79(1 Pt 2):016112. PubMed ID: 19257112 [TBL] [Abstract][Full Text] [Related]
4. Synchronization of spatiotemporal patterns in locally coupled excitable media. Hildebrand M; Cui J; Mihaliuk E; Wang J; Showalter K Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Aug; 68(2 Pt 2):026205. PubMed ID: 14525082 [TBL] [Abstract][Full Text] [Related]
5. Periodic perturbation of chemical oscillators: entrainment and induced synchronization. Makki R; Muñuzuri AP; Perez-Mercader J Chemistry; 2014 Oct; 20(44):14213-7. PubMed ID: 25214439 [TBL] [Abstract][Full Text] [Related]
6. Phase-frequency model of strongly pulse-coupled Belousov-Zhabotinsky oscillators. Horváth V; Kutner DJ; Zeng MD; Epstein IR Chaos; 2019 Feb; 29(2):023128. PubMed ID: 30823715 [TBL] [Abstract][Full Text] [Related]
7. Competition between global feedback and diffusion in coupled Belousov-Zhabotinsky oscillators. Ohno K; Ogawa T; Suematsu NJ Phys Rev E; 2019 Jan; 99(1-1):012208. PubMed ID: 30780237 [TBL] [Abstract][Full Text] [Related]
8. Photosensitive Control and Network Synchronization of Chemical Oscillators. Carballosa A; Gomez-Varela AI; Bao-Varela C; Flores-Arias MT; Muñuzuri AP Entropy (Basel); 2024 May; 26(6):. PubMed ID: 38920484 [TBL] [Abstract][Full Text] [Related]
9. Wave propagation in subexcitable media with periodically modulated excitability. Sendiña-Nadal I; Mihaliuk E; Wang J; Pérez-Muñuzuri V; Showalter K Phys Rev Lett; 2001 Feb; 86(8):1646-9. PubMed ID: 11290214 [TBL] [Abstract][Full Text] [Related]
11. Density wave propagation of a wave train in a closed excitable medium. Suematsu NJ; Sato T; Motoike IN; Kashima K; Nakata S Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Oct; 84(4 Pt 2):046203. PubMed ID: 22181241 [TBL] [Abstract][Full Text] [Related]
12. Loss of coherence in a population of diffusively coupled oscillators. Toth R; Taylor AF J Chem Phys; 2006 Dec; 125(22):224708. PubMed ID: 17176155 [TBL] [Abstract][Full Text] [Related]
13. Spatiotemporal dynamics of networks of excitable nodes. Steele AJ; Tinsley M; Showalter K Chaos; 2006 Mar; 16(1):015110. PubMed ID: 16599776 [TBL] [Abstract][Full Text] [Related]
14. Array-enhanced coherence resonance and phase synchronization in a two-dimensional array of excitable chemical oscillators. Okano T; Kitagawa A; Miyakawa K Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Oct; 76(4 Pt 2):046201. PubMed ID: 17995076 [TBL] [Abstract][Full Text] [Related]
15. Oscillatory clusters in the periodically illuminated, spatially extended Belousov-Zhabotinsky reaction. Vanag VK; Zhabotinsky AM; Epstein IR Phys Rev Lett; 2001 Jan; 86(3):552-5. PubMed ID: 11177878 [TBL] [Abstract][Full Text] [Related]
16. Phase wave between two oscillators in the photosensitive Belousov-Zhabotinsky reaction depending on the difference in the illumination time. Nakata S; Kashima K; Kitahata H; Mori Y J Phys Chem A; 2010 Sep; 114(34):9124-9. PubMed ID: 20695485 [TBL] [Abstract][Full Text] [Related]
17. Experimental, numerical, and mechanistic analysis of the nonmonotonic relationship between oscillatory frequency and photointensity for the photosensitive Belousov-Zhabotinsky oscillator. Ren L; Fan B; Gao Q; Zhao Y; Luo H; Xia Y; Lu X; Epstein IR Chaos; 2015 Jun; 25(6):064607. PubMed ID: 26117132 [TBL] [Abstract][Full Text] [Related]
18. Synchronization of Coupled Oscillators on a Two-Dimensional Plane. Guo D; Fu YQ; Zheng B Chemphyschem; 2016 Aug; 17(15):2355-9. PubMed ID: 27124217 [TBL] [Abstract][Full Text] [Related]
19. Nucleation, drift, and decay of phase bubbles in period-2 oscillatory wave trains in a reaction-diffusion system. Park JS; Woo SJ; Kwon O; Kim TY; Lee KJ Phys Rev Lett; 2008 Feb; 100(6):068302. PubMed ID: 18352523 [TBL] [Abstract][Full Text] [Related]
20. Antiphase and in-phase synchronization of nonlinear oscillators: the Huygens's clocks system. Dilão R Chaos; 2009 Jun; 19(2):023118. PubMed ID: 19566253 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]