These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

427 related articles for article (PubMed ID: 17359074)

  • 1. Mott-insulator transition in a two-dimensional atomic Bose gas.
    Spielman IB; Phillips WD; Porto JV
    Phys Rev Lett; 2007 Feb; 98(8):080404. PubMed ID: 17359074
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phases of a two-dimensional bose gas in an optical lattice.
    Jiménez-García K; Compton RL; Lin YJ; Phillips WD; Porto JV; Spielman IB
    Phys Rev Lett; 2010 Sep; 105(11):110401. PubMed ID: 20867555
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Condensate fraction in a 2D Bose gas measured across the Mott-insulator transition.
    Spielman IB; Phillips WD; Porto JV
    Phys Rev Lett; 2008 Mar; 100(12):120402. PubMed ID: 18517841
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Mott insulator of fermionic atoms in an optical lattice.
    Jördens R; Strohmaier N; Günter K; Moritz H; Esslinger T
    Nature; 2008 Sep; 455(7210):204-7. PubMed ID: 18784720
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms.
    Greiner M; Mandel O; Esslinger T; Hänsch TW; Bloch I
    Nature; 2002 Jan; 415(6867):39-44. PubMed ID: 11780110
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interference of atomic levels and superfluid-Mott insulator phase transitions in a two-component Bose-Einstein condensate.
    Krutitsky KV; Graham R
    Phys Rev Lett; 2003 Dec; 91(24):240406. PubMed ID: 14683098
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantum quench of an atomic Mott insulator.
    Chen D; White M; Borries C; DeMarco B
    Phys Rev Lett; 2011 Jun; 106(23):235304. PubMed ID: 21770517
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tuning the Mott transition in a Bose-Einstein condensate by multiple photon absorption.
    Creffield CE; Monteiro TS
    Phys Rev Lett; 2006 Jun; 96(21):210403. PubMed ID: 16803222
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Imaging the Mott insulator shells by using atomic clock shifts.
    Campbell GK; Mun J; Boyd M; Medley P; Leanhardt AE; Marcassa LG; Pritchard DE; Ketterle W
    Science; 2006 Aug; 313(5787):649-52. PubMed ID: 16888134
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phase diagram for a Bose-Einstein condensate moving in an optical lattice.
    Mun J; Medley P; Campbell GK; Marcassa LG; Pritchard DE; Ketterle W
    Phys Rev Lett; 2007 Oct; 99(15):150604. PubMed ID: 17995152
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Creation of a molecular condensate by dynamically melting a Mott insulator.
    Jaksch D; Venturi V; Cirac JI; Williams CJ; Zoller P
    Phys Rev Lett; 2002 Jul; 89(4):040402. PubMed ID: 12144471
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probing the superfluid-to-Mott insulator transition at the single-atom level.
    Bakr WS; Peng A; Tai ME; Ma R; Simon J; Gillen JI; Fölling S; Pollet L; Greiner M
    Science; 2010 Jul; 329(5991):547-50. PubMed ID: 20558666
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strongly interacting bosons in a disordered optical lattice.
    White M; Pasienski M; McKay D; Zhou SQ; Ceperley D; Demarco B
    Phys Rev Lett; 2009 Feb; 102(5):055301. PubMed ID: 19257516
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nonequilibrium phase transition of interacting bosons in an intra-cavity optical lattice.
    Bakhtiari MR; Hemmerich A; Ritsch H; Thorwart M
    Phys Rev Lett; 2015 Mar; 114(12):123601. PubMed ID: 25860742
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extended Bose-Hubbard models with ultracold magnetic atoms.
    Baier S; Mark MJ; Petter D; Aikawa K; Chomaz L; Cai Z; Baranov M; Zoller P; Ferlaino F
    Science; 2016 Apr; 352(6282):201-5. PubMed ID: 27124454
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Observation of the Mott insulator to superfluid crossover of a driven-dissipative Bose-Hubbard system.
    Tomita T; Nakajima S; Danshita I; Takasu Y; Takahashi Y
    Sci Adv; 2017 Dec; 3(12):e1701513. PubMed ID: 29291246
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Localized excitations at the Mott insulator-superfluid interfaces for confined Bose-Einstein condensates.
    Mariani E; Stern A
    Phys Rev Lett; 2005 Dec; 95(26):263001. PubMed ID: 16486347
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Jaynes-Cummings dynamics with a matter wave oscillator.
    Mølmer K
    Phys Rev Lett; 2003 Mar; 90(11):110403. PubMed ID: 12688919
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrafast Creation of Overlapping Rydberg Electrons in an Atomic BEC and Mott-Insulator Lattice.
    Mizoguchi M; Zhang Y; Kunimi M; Tanaka A; Takeda S; Takei N; Bharti V; Koyasu K; Kishimoto T; Jaksch D; Glaetzle A; Kiffner M; Masella G; Pupillo G; Weidemüller M; Ohmori K
    Phys Rev Lett; 2020 Jun; 124(25):253201. PubMed ID: 32639753
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hubbard Model for Atomic Impurities Bound by the Vortex Lattice of a Rotating Bose-Einstein Condensate.
    Johnson TH; Yuan Y; Bao W; Clark SR; Foot C; Jaksch D
    Phys Rev Lett; 2016 Jun; 116(24):240402. PubMed ID: 27367366
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.