These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 17359101)

  • 1. Bubbly turbulent drag reduction is a boundary layer effect.
    van den Berg TH; van Gils DP; Lathrop DP; Lohse D
    Phys Rev Lett; 2007 Feb; 98(8):084501. PubMed ID: 17359101
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Smooth and rough boundaries in turbulent Taylor-Couette flow.
    van den Berg TH; Doering CR; Lohse D; Lathrop DP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Sep; 68(3 Pt 2):036307. PubMed ID: 14524890
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sodium chloride inhibits effective bubbly drag reduction in turbulent bubbly Taylor-Couette flows.
    Blaauw LJ; Lohse D; Huisman SG
    Philos Trans A Math Phys Eng Sci; 2023 Mar; 381(2243):20220127. PubMed ID: 36709775
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Drag reduction in bubbly Taylor-Couette turbulence.
    van den Berg TH; Luther S; Lathrop DP; Lohse D
    Phys Rev Lett; 2005 Feb; 94(4):044501. PubMed ID: 15783562
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bubble Drag Reduction Requires Large Bubbles.
    Verschoof RA; van der Veen RC; Sun C; Lohse D
    Phys Rev Lett; 2016 Sep; 117(10):104502. PubMed ID: 27636479
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Twente turbulent Taylor-Couette (T3C) facility: strongly turbulent (multiphase) flow between two independently rotating cylinders.
    van Gils DP; Bruggert GW; Lathrop DP; Sun C; Lohse D
    Rev Sci Instrum; 2011 Feb; 82(2):025105. PubMed ID: 21361631
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sustained drag reduction in a turbulent flow using a low-temperature Leidenfrost surface.
    Saranadhi D; Chen D; Kleingartner JA; Srinivasan S; Cohen RE; McKinley GH
    Sci Adv; 2016 Oct; 2(10):e1600686. PubMed ID: 27757417
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polymer-induced drag enhancement in turbulent Taylor-Couette flows: direct numerical simulations and mechanistic insight.
    Liu N; Khomami B
    Phys Rev Lett; 2013 Sep; 111(11):114501. PubMed ID: 24074092
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Body surface adaptations to boundary-layer dynamics.
    Videler JJ
    Symp Soc Exp Biol; 1995; 49():1-20. PubMed ID: 8571218
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sustainable drag reduction in turbulent Taylor-Couette flows by depositing sprayable superhydrophobic surfaces.
    Srinivasan S; Kleingartner JA; Gilbert JB; Cohen RE; Milne AJ; McKinley GH
    Phys Rev Lett; 2015 Jan; 114(1):014501. PubMed ID: 25615472
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Drag reduction in turbulent boundary layers by in-plane wall motion.
    Quadrio M
    Philos Trans A Math Phys Eng Sci; 2011 Apr; 369(1940):1428-42. PubMed ID: 21382823
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultimate turbulent Taylor-Couette flow.
    Huisman SG; van Gils DP; Grossmann S; Sun C; Lohse D
    Phys Rev Lett; 2012 Jan; 108(2):024501. PubMed ID: 22324687
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Drag Reduction Using Polysaccharides in a Taylor⁻Couette Flow.
    Bhambri P; Narain R; Fleck B
    Polymers (Basel); 2017 Dec; 9(12):. PubMed ID: 30965982
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical study on the influence of wall temperature gradient on aerodynamic characteristics of low aspect ratio flying wing configuration.
    Lin P; Liu X; Xiong N; Wang X; Shang M; Liu G; Tao Y
    Sci Rep; 2021 Aug; 11(1):16295. PubMed ID: 34381068
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rough-wall turbulent Taylor-Couette flow: The effect of the rib height.
    Verschoof RA; Zhu X; Bakhuis D; Huisman SG; Verzicco R; Sun C; Lohse D
    Eur Phys J E Soft Matter; 2018 Oct; 41(10):125. PubMed ID: 30338436
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-Reynolds-number turbulent-boundary-layer wall pressure fluctuations with skin-friction reduction by air injection.
    Winkel ES; Elbing BR; Ceccio SL; Perlin M; Dowling DR
    J Acoust Soc Am; 2008 May; 123(5):2522-30. PubMed ID: 18529171
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploring the origin of turbulent Taylor rolls.
    Jeganathan V; Alba K; Ostilla-Mónico R
    Philos Trans A Math Phys Eng Sci; 2023 Mar; 381(2243):20220130. PubMed ID: 36709783
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Turbulent boundary layer under the control of different schemes.
    Qiao ZX; Zhou Y; Wu Z
    Proc Math Phys Eng Sci; 2017 Jun; 473(2202):20170038. PubMed ID: 28690409
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental Investigations of the Turbulent Boundary Layer for Biomimetic Protrusive Surfaces Inspired by Pufferfish Skin: Effects of Spinal Density and Diameter.
    Fan D; Feng X; Tian G; Zhang Y
    Langmuir; 2021 Oct; 37(40):11804-11817. PubMed ID: 34597049
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Large-Eddy BreakUp Devices - a 40 Years Perspective from a Stockholm Horizon.
    Alfredsson PH; Örlü R
    Flow Turbul Combust; 2018; 100(4):877-888. PubMed ID: 30069144
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.