These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Topology of megagauss magnetic fields and of heat-carrying electrons produced in a high-power laser-solid interaction. Lancia L; Albertazzi B; Boniface C; Grisollet A; Riquier R; Chaland F; Le Thanh KC; Mellor P; Antici P; Buffechoux S; Chen SN; Doria D; Nakatsutsumi M; Peth C; Swantusch M; Stardubtsev M; Palumbo L; Borghesi M; Willi O; Pépin H; Fuchs J Phys Rev Lett; 2014 Dec; 113(23):235001. PubMed ID: 25526131 [TBL] [Abstract][Full Text] [Related]
3. X-ray imaging with grazing-incidence microscopes developed for the LIL program. Rosch R; Boutin JY; le Breton JP; Gontier D; Jadaud JP; Reverdin C; Soullié G; Lidove G; Maroni R Rev Sci Instrum; 2007 Mar; 78(3):033704. PubMed ID: 17411188 [TBL] [Abstract][Full Text] [Related]
4. Time-dependent density-functional-theory calculations of the nonlocal electron stopping range for inertial confinement fusion applications. Nichols KA; Hu SX; White AJ; Goncharov VN; Mihaylov DI; Collins LA; Shaffer NR; Karasiev VV Phys Rev E; 2023 Sep; 108(3-2):035206. PubMed ID: 37849196 [TBL] [Abstract][Full Text] [Related]
5. Direct drive with the argon fluoride laser as a path to high fusion gain with sub-megajoule laser energy. Obenschain SP; Schmitt AJ; Bates JW; Wolford MF; Myers MC; McGeoch MW; Karasik M; Weaver JL Philos Trans A Math Phys Eng Sci; 2020 Nov; 378(2184):20200031. PubMed ID: 33040651 [TBL] [Abstract][Full Text] [Related]
6. Test of thermal transport models through dynamic overpressure stabilization of ablation-front perturbation growth in laser-driven CH foils. Gotchev OV; Goncharov VN; Knauer JP; Boehly TR; Collins TJ; Epstein R; Jaanimagi PA; Meyerhofer DD Phys Rev Lett; 2006 Mar; 96(11):115005. PubMed ID: 16605835 [TBL] [Abstract][Full Text] [Related]
7. Effects of electron-ion temperature equilibration on inertial confinement fusion implosions. Xu B; Hu SX Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 2):016408. PubMed ID: 21867323 [TBL] [Abstract][Full Text] [Related]
8. Quenching of the nonlocal electron heat transport by large external magnetic fields in a laser-produced plasma measured with imaging thomson scattering. Froula DH; Ross JS; Pollock BB; Davis P; James AN; Divol L; Edwards MJ; Offenberger AA; Price D; Town RP; Tynan GR; Glenzer SH Phys Rev Lett; 2007 Mar; 98(13):135001. PubMed ID: 17501207 [TBL] [Abstract][Full Text] [Related]
9. Symmetric inertial confinement fusion implosions at ultra-high laser energies. Glenzer SH; MacGowan BJ; Michel P; Meezan NB; Suter LJ; Dixit SN; Kline JL; Kyrala GA; Bradley DK; Callahan DA; Dewald EL; Divol L; Dzenitis E; Edwards MJ; Hamza AV; Haynam CA; Hinkel DE; Kalantar DH; Kilkenny JD; Landen OL; Lindl JD; LePape S; Moody JD; Nikroo A; Parham T; Schneider MB; Town RP; Wegner P; Widmann K; Whitman P; Young BK; Van Wonterghem B; Atherton LJ; Moses EI Science; 2010 Mar; 327(5970):1228-31. PubMed ID: 20110465 [TBL] [Abstract][Full Text] [Related]
10. Enhancement of pressure perturbations in ablation due to kinetic magnetized transport effects under direct-drive inertial confinement fusion relevant conditions. Hill DW; Kingham RJ Phys Rev E; 2018 Aug; 98(2-1):021201. PubMed ID: 30253597 [TBL] [Abstract][Full Text] [Related]
11. Magnetic cavitation and the reemergence of nonlocal transport in laser plasmas. Ridgers CP; Kingham RJ; Thomas AG Phys Rev Lett; 2008 Feb; 100(7):075003. PubMed ID: 18352564 [TBL] [Abstract][Full Text] [Related]
12. Fast advection of magnetic fields by hot electrons. Willingale L; Thomas AG; Nilson PM; Kaluza MC; Bandyopadhyay S; Dangor AE; Evans RG; Fernandes P; Haines MG; Kamperidis C; Kingham RJ; Minardi S; Notley M; Ridgers CP; Rozmus W; Sherlock M; Tatarakis M; Wei MS; Najmudin Z; Krushelnick K Phys Rev Lett; 2010 Aug; 105(9):095001. PubMed ID: 20868167 [TBL] [Abstract][Full Text] [Related]
13. Electron-energy loss study of nonlocal effects in connected plasmonic nanoprisms. Wiener A; Duan H; Bosman M; Horsfield AP; Pendry JB; Yang JK; Maier SA; Fernández-Domínguez AI ACS Nano; 2013 Jul; 7(7):6287-96. PubMed ID: 23782059 [TBL] [Abstract][Full Text] [Related]
14. Prolate-spheroid ("rugby-shaped") hohlraum for inertial confinement fusion. Vandenboomgaerde M; Bastian J; Casner A; Galmiche D; Jadaud JP; Laffite S; Liberatore S; Malinie G; Philippe F Phys Rev Lett; 2007 Aug; 99(6):065004. PubMed ID: 17930838 [TBL] [Abstract][Full Text] [Related]
15. Effect of the plasma-generated magnetic field on relativistic electron transport. Nicolaï P; Feugeas JL; Regan C; Olazabal-Loumé M; Breil J; Dubroca B; Morreeuw JP; Tikhonchuk V Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 2):016402. PubMed ID: 21867317 [TBL] [Abstract][Full Text] [Related]
16. Magnetic reconnection in plasma under inertial confinement fusion conditions driven by heat flux effects in Ohm's law. Joglekar AS; Thomas AG; Fox W; Bhattacharjee A Phys Rev Lett; 2014 Mar; 112(10):105004. PubMed ID: 24679302 [TBL] [Abstract][Full Text] [Related]
17. Seeding magnetic fields for laser-driven flux compression in high-energy-density plasmas. Gotchev OV; Knauer JP; Chang PY; Jang NW; Shoup MJ; Meyerhofer DD; Betti R Rev Sci Instrum; 2009 Apr; 80(4):043504. PubMed ID: 19405657 [TBL] [Abstract][Full Text] [Related]