These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 17359167)

  • 1. Dislocation dynamics in nanocrystalline nickel.
    Shan ZW; Wiezorek JM; Stach EA; Follstaedt DM; Knapp JA; Mao SX
    Phys Rev Lett; 2007 Mar; 98(9):095502. PubMed ID: 17359167
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Grain boundary-mediated plasticity in nanocrystalline nickel.
    Shan Z; Stach EA; Wiezorek JM; Knapp JA; Follstaedt DM; Mao SX
    Science; 2004 Jul; 305(5684):654-7. PubMed ID: 15286368
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combination of in situ straining and ACOM TEM: a novel method for analysis of plastic deformation of nanocrystalline metals.
    Kobler A; Kashiwar A; Hahn H; Kübel C
    Ultramicroscopy; 2013 May; 128():68-81. PubMed ID: 23524380
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inter- and intra-agglomerate fracture in nanocrystalline nickel.
    Shan Z; Knapp JA; Follstaedt DM; Stach EA; Wiezorek JM; Mao SX
    Phys Rev Lett; 2008 Mar; 100(10):105502. PubMed ID: 18352202
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanodomained Nickel Unite Nanocrystal Strength with Coarse-Grain Ductility.
    Wu X; Yuan F; Yang M; Jiang P; Zhang C; Chen L; Wei Y; Ma E
    Sci Rep; 2015 Jun; 5():11728. PubMed ID: 26122728
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dislocation processes in the deformation of nanocrystalline aluminium by molecular-dynamics simulation.
    Yamakov V; Wolf D; Phillpot SR; Mukherjee AK; Gleiter H
    Nat Mater; 2002 Sep; 1(1):45-8. PubMed ID: 12618848
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Grain rotation mediated by grain boundary dislocations in nanocrystalline platinum.
    Wang L; Teng J; Liu P; Hirata A; Ma E; Zhang Z; Chen M; Han X
    Nat Commun; 2014 Jul; 5():4402. PubMed ID: 25030380
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Size effect on the deformation mechanisms of nanocrystalline platinum thin films.
    Shu X; Kong D; Lu Y; Long H; Sun S; Sha X; Zhou H; Chen Y; Mao S; Liu Y
    Sci Rep; 2017 Oct; 7(1):13264. PubMed ID: 29038576
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In situ observation of deformation processes in nanocrystalline face-centered cubic metals.
    Kobler A; Brandl C; Hahn H; Kübel C
    Beilstein J Nanotechnol; 2016; 7():572-80. PubMed ID: 27335747
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrahigh strength in nanocrystalline materials under shock loading.
    Bringa EM; Caro A; Wang Y; Victoria M; McNaney JM; Remington BA; Smith RF; Torralva BR; Van Swygenhoven H
    Science; 2005 Sep; 309(5742):1838-41. PubMed ID: 16166512
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monotonic and cyclic plastic deformation behavior of nanocrystalline gold: atomistic simulations.
    Rajput A; Ghosal P; Kumar A; Paul SK
    J Mol Model; 2019 May; 25(6):153. PubMed ID: 31073697
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasticity of nanocrystalline alloys with chemical order: on the strength and ductility of nanocrystalline Ni-Fe.
    Schäfer J; Albe K
    Beilstein J Nanotechnol; 2013; 4():542-53. PubMed ID: 24205450
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deformation-induced grain growth and twinning in nanocrystalline palladium thin films.
    Kobler A; Lohmiller J; Schäfer J; Kerber M; Castrup A; Kashiwar A; Gruber PA; Albe K; Hahn H; Kübel C
    Beilstein J Nanotechnol; 2013; 4():554-66. PubMed ID: 24205451
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Texture of nanocrystalline nickel: probing the lower size limit of dislocation activity.
    Chen B; Lutker K; Raju SV; Yan J; Kanitpanyacharoen W; Lei J; Yang S; Wenk HR; Mao HK; Williams Q
    Science; 2012 Dec; 338(6113):1448-51. PubMed ID: 23239731
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanically Driven Grain Boundary Formation in Nickel Nanowires.
    Wang L; Kong D; Zhang Y; Xiao L; Lu Y; Chen Z; Zhang Z; Zou J; Zhu T; Han X
    ACS Nano; 2017 Dec; 11(12):12500-12508. PubMed ID: 29131584
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of reorganization of a nanocrystalline grain boundary network during biaxial creep deformation of nanocrystalline Ni using molecular dynamics simulation.
    Pal S; Meraj M
    J Mol Model; 2019 Aug; 25(9):282. PubMed ID: 31468178
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In situ TEM study of grain growth in nanocrystalline copper thin films.
    Simões S; Calinas R; Vieira MT; Vieira MF; Ferreira PJ
    Nanotechnology; 2010 Apr; 21(14):145701. PubMed ID: 20215662
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the orientations of abnormally grown grains in nanocrystalline Ni and Ni-Fe.
    Klement U; da Silva M; Skrotzki W
    J Microsc; 2008 Jun; 230(Pt 3):455-63. PubMed ID: 18503672
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In situ observation of dislocation behavior in nanometer grains.
    Wang L; Han X; Liu P; Yue Y; Zhang Z; Ma E
    Phys Rev Lett; 2010 Sep; 105(13):135501. PubMed ID: 21230786
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Softening due to disordered grain boundaries in nanocrystalline Co.
    Yuasa M; Hakamada M; Nakano H; Mabuchi M; Chino Y
    J Phys Condens Matter; 2013 Aug; 25(34):345702. PubMed ID: 23896760
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.