These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

64 related articles for article (PubMed ID: 17359202)

  • 1. How Xenopus laevis replicates DNA reliably even though its origins of replication are located and initiated stochastically.
    Bechhoefer J; Marshall B
    Phys Rev Lett; 2007 Mar; 98(9):098105. PubMed ID: 17359202
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How Xenopus laevis embryos replicate reliably: investigating the random-completion problem.
    Yang SC; Bechhoefer J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Oct; 78(4 Pt 1):041917. PubMed ID: 18999465
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Origin-specific initiation of mammalian nuclear DNA replication in a Xenopus cell-free system.
    Wu JR; Yu G; Gilbert DM
    Methods; 1997 Nov; 13(3):313-24. PubMed ID: 9441857
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inferring the spatiotemporal DNA replication program from noisy data.
    Baker A; Bechhoefer J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Mar; 89(3):032703. PubMed ID: 24730871
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of DNA replication in Xenopus laevis and Simian Virus 40.
    Oehlmann M; Mahon C; Nasheuer HP
    Adv Exp Med Biol; 2007; 604():3-16. PubMed ID: 17695718
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Attachment of DNA loops to an artificial matrix does not affect the origin of replication initiation in early development of African clawed frog].
    Vasetskiĭ ES
    Ontogenez; 2003; 34(4):262-6. PubMed ID: 12942736
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A dynamic stochastic model for DNA replication initiation in early embryos.
    Goldar A; Labit H; Marheineke K; Hyrien O
    PLoS One; 2008 Aug; 3(8):e2919. PubMed ID: 18682801
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Replication fork density increases during DNA synthesis in X. laevis egg extracts.
    Herrick J; Stanislawski P; Hyrien O; Bensimon A
    J Mol Biol; 2000 Jul; 300(5):1133-42. PubMed ID: 10903859
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetic model of DNA replication in eukaryotic organisms.
    Herrick J; Jun S; Bechhoefer J; Bensimon A
    J Mol Biol; 2002 Jul; 320(4):741-50. PubMed ID: 12095252
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanisms ensuring rapid and complete DNA replication despite random initiation in Xenopus early embryos.
    Lucas I; Chevrier-Miller M; Sogo JM; Hyrien O
    J Mol Biol; 2000 Feb; 296(3):769-86. PubMed ID: 10677280
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Persistence length of chromatin determines origin spacing in Xenopus early-embryo DNA replication: quantitative comparisons between theory and experiment.
    Jun S; Herrick J; Bensimon A; Bechhoefer J
    Cell Cycle; 2004 Feb; 3(2):223-9. PubMed ID: 14712093
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mimosine differentially inhibits DNA replication and cell cycle progression in somatic cells compared to embryonic cells of Xenopus laevis.
    Wang Y; Zhao J; Clapper J; Martin LD; Du C; DeVore ER; Harkins K; Dobbs DL; Benbow RM
    Exp Cell Res; 1995 Mar; 217(1):84-91. PubMed ID: 7867725
    [TBL] [Abstract][Full Text] [Related]  

  • 13. XCDT1 is required for the assembly of pre-replicative complexes in Xenopus laevis.
    Maiorano D; Moreau J; Méchali M
    Nature; 2000 Apr; 404(6778):622-5. PubMed ID: 10766247
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mathematical modelling of eukaryotic DNA replication.
    Hyrien O; Goldar A
    Chromosome Res; 2010 Jan; 18(1):147-61. PubMed ID: 20205354
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DNA replication origins, ORC/DNA interaction, and assembly of pre-replication complex in eukaryotes.
    Sun J; Kong D
    Acta Biochim Biophys Sin (Shanghai); 2010 Jul; 42(7):433-9. PubMed ID: 20705581
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NCOA4 transcriptional coactivator inhibits activation of DNA replication origins.
    Bellelli R; Castellone MD; Guida T; Limongello R; Dathan NA; Merolla F; Cirafici AM; Affuso A; Masai H; Costanzo V; Grieco D; Fusco A; Santoro M; Carlomagno F
    Mol Cell; 2014 Jul; 55(1):123-37. PubMed ID: 24910095
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The N-terminal noncatalytic region of Xenopus RecQ4 is required for chromatin binding of DNA polymerase alpha in the initiation of DNA replication.
    Matsuno K; Kumano M; Kubota Y; Hashimoto Y; Takisawa H
    Mol Cell Biol; 2006 Jul; 26(13):4843-52. PubMed ID: 16782873
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Monte Carlo simulation of the Escherichia coli cell cycle.
    Keasling JD; Kuo H; Vahanian G
    J Theor Biol; 1995 Oct; 176(3):411-30. PubMed ID: 8538219
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Initiation of DNA replication requires the RECQL4 protein mutated in Rothmund-Thomson syndrome.
    Sangrithi MN; Bernal JA; Madine M; Philpott A; Lee J; Dunphy WG; Venkitaraman AR
    Cell; 2005 Jun; 121(6):887-98. PubMed ID: 15960976
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chromosomal DNA replication in a soluble cell-free system derived from Xenopus eggs.
    Tutter AV; Walter JC
    Methods Mol Biol; 2006; 322():121-37. PubMed ID: 16739720
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.