BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 17359266)

  • 21. Genomic insights into Mn(II) oxidation by the marine alphaproteobacterium Aurantimonas sp. strain SI85-9A1.
    Dick GJ; Podell S; Johnson HA; Rivera-Espinoza Y; Bernier-Latmani R; McCarthy JK; Torpey JW; Clement BG; Gaasterland T; Tebo BM
    Appl Environ Microbiol; 2008 May; 74(9):2646-58. PubMed ID: 18344346
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Diminished redundancy of outer membrane factor proteins in rhizobiales: a nodT homolog is essential for free-living Rhizobium etli.
    Hernández-Mendoza A; Nava N; Santana O; Abreu-Goodger C; Tovar A; Quinto C
    J Mol Microbiol Biotechnol; 2007; 13(1-3):22-34. PubMed ID: 17693710
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A non-blue laccase of Bacillus sp. GZB displays manganese-oxidase activity: A study of laccase characterization, Mn(II) oxidation and prediction of Mn(II) oxidation mechanism.
    Das R; Liang Z; Li G; An T
    Chemosphere; 2020 Aug; 252():126619. PubMed ID: 32443277
    [TBL] [Abstract][Full Text] [Related]  

  • 24. CotA of Bacillus subtilis is a copper-dependent laccase.
    Hullo MF; Moszer I; Danchin A; Martin-Verstraete I
    J Bacteriol; 2001 Sep; 183(18):5426-30. PubMed ID: 11514528
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A cloned Bacillus halodurans multicopper oxidase exhibiting alkaline laccase activity.
    Ruijssenaars HJ; Hartmans S
    Appl Microbiol Biotechnol; 2004 Aug; 65(2):177-82. PubMed ID: 15293032
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enzymatic manganese(II) oxidation by a marine alpha-proteobacterium.
    Francis CA; Co EM; Tebo BM
    Appl Environ Microbiol; 2001 Sep; 67(9):4024-9. PubMed ID: 11526000
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A structural study towards the understanding of the interactions of SoxY, SoxZ, and SoxB, leading to the oxidation of sulfur anions via the novel global sulfur oxidizing (sox) operon.
    Bagchi A; Ghosh TC
    Biochem Biophys Res Commun; 2005 Sep; 335(2):609-15. PubMed ID: 16084835
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Diversity of ammonium-oxidizing bacteria in a granular sludge anaerobic ammonium-oxidizing (anammox) reactor.
    Quan ZX; Rhee SK; Zuo JE; Yang Y; Bae JW; Park JR; Lee ST; Park YH
    Environ Microbiol; 2008 Nov; 10(11):3130-9. PubMed ID: 18479446
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A putative multicopper oxidase, IoxA, is involved in iodide oxidation by Roseovarius sp. strain A-2.
    Shiroyama K; Kawasaki Y; Unno Y; Amachi S
    Biosci Biotechnol Biochem; 2015; 79(11):1898-905. PubMed ID: 26041311
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The multicopper oxidase CutO confers copper tolerance to Rhodobacter capsulatus.
    Wiethaus J; Wildner GF; Masepohl B
    FEMS Microbiol Lett; 2006 Mar; 256(1):67-74. PubMed ID: 16487321
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Molecular phylogeny of methylotrophs in a deep-sea sediment from a tropical west Pacific Warm Pool.
    Wang P; Wang F; Xu M; Xiao X
    FEMS Microbiol Ecol; 2004 Jan; 47(1):77-84. PubMed ID: 19712348
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A robust metallo-oxidase from the hyperthermophilic bacterium Aquifex aeolicus.
    Fernandes AT; Soares CM; Pereira MM; Huber R; Grass G; Martins LO
    FEBS J; 2007 Jun; 274(11):2683-94. PubMed ID: 17451433
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The Laccase Engineering Database: a classification and analysis system for laccases and related multicopper oxidases.
    Sirim D; Wagner F; Wang L; Schmid RD; Pleiss J
    Database (Oxford); 2011; 2011():bar006. PubMed ID: 21498547
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Genome analysis of Pseudomonas sp. OF001 and Rubrivivax sp. A210 suggests multicopper oxidases catalyze manganese oxidation required for cylindrospermopsin transformation.
    Martínez-Ruiz EB; Cooper M; Barrero-Canosa J; Haryono MAS; Bessarab I; Williams RBH; Szewzyk U
    BMC Genomics; 2021 Jun; 22(1):464. PubMed ID: 34157973
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enzymatic oxidation of manganese ions catalysed by laccase.
    Gorbacheva M; Morozova O; Shumakovich G; Streltsov A; Shleev S; Yaropolov A
    Bioorg Chem; 2009 Feb; 37(1):1-5. PubMed ID: 18976793
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identification of a Third Mn(II) Oxidase Enzyme in Pseudomonas putida GB-1.
    Geszvain K; Smesrud L; Tebo BM
    Appl Environ Microbiol; 2016 Jul; 82(13):3774-3782. PubMed ID: 27084014
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biological characteristics and oxidation mechanism of a new manganese-oxidizing bacteria FM-2.
    Tang W; Xia J; Zeng X; Wu L; Ye G
    Biomed Mater Eng; 2014; 24(1):703-9. PubMed ID: 24211955
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Diversity of laccase-like multicopper oxidase genes in Morchellaceae: identification of genes potentially involved in extracellular activities related to plant litter decay.
    Kellner H; Luis P; Buscot F
    FEMS Microbiol Ecol; 2007 Jul; 61(1):153-63. PubMed ID: 17466024
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Marine Bacillus spores as catalysts for oxidative precipitation and sorption of metals.
    Francis CA; Tebo BM
    J Mol Microbiol Biotechnol; 1999 Aug; 1(1):71-8. PubMed ID: 10941787
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Substrate specificity and copper loading of the manganese-oxidizing multicopper oxidase Mnx from Bacillus sp. PL-12.
    Butterfield CN; Tebo BM
    Metallomics; 2017 Feb; 9(2):183-191. PubMed ID: 28128836
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.