These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Application and properties of butyl acrylate/pentaerythrite triacrylate copolymers and cellulose-based Granocel as carriers for trypsin immobilization. Bryjak J; Liesiene J; Kolarz BN Colloids Surf B Biointerfaces; 2008 Jan; 61(1):66-74. PubMed ID: 17768035 [TBL] [Abstract][Full Text] [Related]
4. [Immobilization of commercial glucoamylase on the polymer carrier]. Iarovenko VL; Pisarenko TN; Ustinnikov BA; Rodzevich VI; Camoilova NA Prikl Biokhim Mikrobiol; 1979; 15(6):869-73. PubMed ID: 119963 [TBL] [Abstract][Full Text] [Related]
5. Reversible immobilization of glucoamylase by ionic adsorption on sepabeads coated with polyethyleneimine. Torres R; Pessela BC; Mateo C; Ortiz C; Fuentes M; Guisan JM; Fernandez-Lafuente R Biotechnol Prog; 2004; 20(4):1297-300. PubMed ID: 15296467 [TBL] [Abstract][Full Text] [Related]
6. Synthesis of a mesoporous functional copolymer bead carrier and its properties for glucoamylase immobilization. Bai Y; Li Y; Lei L Appl Microbiol Biotechnol; 2009 Jun; 83(3):457-64. PubMed ID: 19205693 [TBL] [Abstract][Full Text] [Related]
7. [Kinetic-thermodynamic aspects of catalysis of polysaccharides by native end immobilized amylases]. Kovaleva TA Biofizika; 2000; 45(3):439-44. PubMed ID: 10872055 [TBL] [Abstract][Full Text] [Related]
8. Surface-anchored poly(2-vinyl-4,4-dimethyl azlactone) brushes as templates for enzyme immobilization. Cullen SP; Mandel IC; Gopalan P Langmuir; 2008 Dec; 24(23):13701-9. PubMed ID: 18956849 [TBL] [Abstract][Full Text] [Related]
10. [Catalytic properties of glucoamylase immobilized on the synthetic carbon material Sibunit]. Kovalenko GA; Perminova LV; Terent'eva TG; Plaksin GV Prikl Biokhim Mikrobiol; 2007; 43(4):412-8. PubMed ID: 17929567 [TBL] [Abstract][Full Text] [Related]
11. Affinity covalent immobilization of glucoamylase onto ρ-benzoquinone-activated alginate beads: II. Enzyme immobilization and characterization. Eldin MS; Seuror EI; Nasr MA; Tieama HA Appl Biochem Biotechnol; 2011 May; 164(1):45-57. PubMed ID: 21063806 [TBL] [Abstract][Full Text] [Related]
12. Co-immobilized enzymes in magnetic chitosan beads for improved hydrolysis of macromolecular substrates under a time-varying magnetic field. Yang K; Xu NS; Su WW J Biotechnol; 2010 Jul; 148(2-3):119-27. PubMed ID: 20580753 [TBL] [Abstract][Full Text] [Related]
13. [Effect of progressive chemical modification on the activity and thermal stability of soluble and immobilized glucoamylase]. Gerasimas VB; Chernoglazov VM; Klesov AA Biokhimiia; 1980 Jun; 45(6):1086-92. PubMed ID: 6783128 [TBL] [Abstract][Full Text] [Related]
14. Immobilization of α-amylase and amyloglucosidase onto ion-exchange resin beads and hydrolysis of natural starch at high concentration. Gupta K; Jana AK; Kumar S; Maiti M Bioprocess Biosyst Eng; 2013 Nov; 36(11):1715-24. PubMed ID: 23572179 [TBL] [Abstract][Full Text] [Related]
15. Immobilization of glucoamylase by adsorption on carbon supports and its application for heterogeneous hydrolysis of dextrin. Kovalenko GA; Perminova LV Carbohydr Res; 2008 May; 343(7):1202-11. PubMed ID: 18346718 [TBL] [Abstract][Full Text] [Related]