These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
424 related articles for article (PubMed ID: 17360513)
1. Two proton transfers in the transition state for nucleotidyl transfer catalyzed by RNA- and DNA-dependent RNA and DNA polymerases. Castro C; Smidansky E; Maksimchuk KR; Arnold JJ; Korneeva VS; Götte M; Konigsberg W; Cameron CE Proc Natl Acad Sci U S A; 2007 Mar; 104(11):4267-72. PubMed ID: 17360513 [TBL] [Abstract][Full Text] [Related]
2. Poliovirus RNA-dependent RNA polymerase (3Dpol): pre-steady-state kinetic analysis of ribonucleotide incorporation in the presence of Mg2+. Arnold JJ; Cameron CE Biochemistry; 2004 May; 43(18):5126-37. PubMed ID: 15122878 [TBL] [Abstract][Full Text] [Related]
3. Nucleic acid polymerases use a general acid for nucleotidyl transfer. Castro C; Smidansky ED; Arnold JJ; Maksimchuk KR; Moustafa I; Uchida A; Götte M; Konigsberg W; Cameron CE Nat Struct Mol Biol; 2009 Feb; 16(2):212-8. PubMed ID: 19151724 [TBL] [Abstract][Full Text] [Related]
4. Pre-steady-state and stopped-flow fluorescence analysis of Escherichia coli ribonuclease III: insights into mechanism and conformational changes associated with binding and catalysis. Campbell FE; Cassano AG; Anderson VE; Harris ME J Mol Biol; 2002 Mar; 317(1):21-40. PubMed ID: 11916377 [TBL] [Abstract][Full Text] [Related]
5. Poliovirus RNA-dependent RNA polymerase (3Dpol): pre-steady-state kinetic analysis of ribonucleotide incorporation in the presence of Mn2+. Arnold JJ; Gohara DW; Cameron CE Biochemistry; 2004 May; 43(18):5138-48. PubMed ID: 15122879 [TBL] [Abstract][Full Text] [Related]
6. A quantum mechanical investigation of possible mechanisms for the nucleotidyl transfer reaction catalyzed by DNA polymerase beta. Bojin MD; Schlick T J Phys Chem B; 2007 Sep; 111(38):11244-52. PubMed ID: 17764165 [TBL] [Abstract][Full Text] [Related]
7. DNA polymerase beta fidelity: halomethylene-modified leaving groups in pre-steady-state kinetic analysis reveal differences at the chemical transition state. Sucato CA; Upton TG; Kashemirov BA; Osuna J; Oertell K; Beard WA; Wilson SH; Florián J; Warshel A; McKenna CE; Goodman MF Biochemistry; 2008 Jan; 47(3):870-9. PubMed ID: 18161950 [TBL] [Abstract][Full Text] [Related]
8. Analysis of nucleotide insertion and extension at 8-oxo-7,8-dihydroguanine by replicative T7 polymerase exo- and human immunodeficiency virus-1 reverse transcriptase using steady-state and pre-steady-state kinetics. Furge LL; Guengerich FP Biochemistry; 1997 May; 36(21):6475-87. PubMed ID: 9174365 [TBL] [Abstract][Full Text] [Related]
9. Multiple deprotonation paths of the nucleophile 3'-OH in the DNA synthesis reaction. Gregory MT; Gao Y; Cui Q; Yang W Proc Natl Acad Sci U S A; 2021 Jun; 118(23):. PubMed ID: 34088846 [TBL] [Abstract][Full Text] [Related]
10. Crystal structure of a pre-chemistry viral RNA-dependent RNA polymerase suggests participation of two basic residues in catalysis. Li R; Wang M; Gong P Nucleic Acids Res; 2022 Nov; 50(21):12389-12399. PubMed ID: 36477355 [TBL] [Abstract][Full Text] [Related]
11. Polymerase-tailored variations in the water-mediated and substrate-assisted mechanism for nucleotidyl transfer: insights from a study of T7 DNA polymerase. Wang L; Broyde S; Zhang Y J Mol Biol; 2009 Jun; 389(4):787-96. PubMed ID: 19389406 [TBL] [Abstract][Full Text] [Related]
12. Effect of Different Divalent Cations on the Kinetics and Fidelity of RB69 DNA Polymerase. Vashishtha AK; Konigsberg WH Biochemistry; 2016 May; 55(18):2661-70. PubMed ID: 27096230 [TBL] [Abstract][Full Text] [Related]
13. [Nucleotide-dependent degradation of nucleic acids by DNA and RNA polymerases]. Sosunov VV; Viktorova LS Mol Biol (Mosk); 2004; 38(5):804-22. PubMed ID: 15554184 [TBL] [Abstract][Full Text] [Related]
14. Computer simulation of the chemical catalysis of DNA polymerases: discriminating between alternative nucleotide insertion mechanisms for T7 DNA polymerase. Florián J; Goodman MF; Warshel A J Am Chem Soc; 2003 Jul; 125(27):8163-77. PubMed ID: 12837086 [TBL] [Abstract][Full Text] [Related]
15. Pre-steady-state kinetics of RB69 DNA polymerase and its exo domain mutants: effect of pH and thiophosphoryl linkages on 3'-5' exonuclease activity. Wang CX; Zakharova E; Li J; Joyce CM; Wang J; Konigsberg W Biochemistry; 2004 Apr; 43(13):3853-61. PubMed ID: 15049692 [TBL] [Abstract][Full Text] [Related]
16. Steady-state and pre-steady-state kinetic analysis of 8-oxo-7,8-dihydroguanosine triphosphate incorporation and extension by replicative and repair DNA polymerases. Einolf HJ; Schnetz-Boutaud N; Guengerich FP Biochemistry; 1998 Sep; 37(38):13300-12. PubMed ID: 9748338 [TBL] [Abstract][Full Text] [Related]
17. Structural insights into complete metal ion coordination from ternary complexes of B family RB69 DNA polymerase. Xia S; Wang M; Blaha G; Konigsberg WH; Wang J Biochemistry; 2011 Oct; 50(42):9114-24. PubMed ID: 21923197 [TBL] [Abstract][Full Text] [Related]
18. Quantum mechanics/molecular mechanics investigation of the chemical reaction in Dpo4 reveals water-dependent pathways and requirements for active site reorganization. Wang Y; Schlick T J Am Chem Soc; 2008 Oct; 130(40):13240-50. PubMed ID: 18785738 [TBL] [Abstract][Full Text] [Related]
19. Fidelity of Nucleotide Incorporation by the RNA-Dependent RNA Polymerase from Poliovirus. Cameron CE; Moustafa IM; Arnold JJ Enzymes; 2016; 39():293-323. PubMed ID: 27241934 [TBL] [Abstract][Full Text] [Related]
20. Is there a catalytic base in the active site of cAMP-dependent protein kinase? Zhou J; Adams JA Biochemistry; 1997 Mar; 36(10):2977-84. PubMed ID: 9062128 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]