BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 17360523)

  • 1. Studies of nucleotide binding to the catalytic sites of Escherichia coli betaY331W-F1-ATPase using fluorescence quenching.
    Bulygin VV; Milgrom YM
    Proc Natl Acad Sci U S A; 2007 Mar; 104(11):4327-31. PubMed ID: 17360523
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Does F1-ATPase have a catalytic site that preferentially binds MgADP?
    Mao HZ; Gray WD; Weber J
    FEBS Lett; 2006 Jul; 580(17):4131-5. PubMed ID: 16828083
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The alpha 3(beta Y341W)3 gamma subcomplex of the F1-ATPase from the thermophilic Bacillus PS3 fails to dissociate ADP when MgATP is hydrolyzed at a single catalytic site and attains maximal velocity when three catalytic sites are saturated with MgATP.
    Dou C; Fortes PA; Allison WS
    Biochemistry; 1998 Nov; 37(47):16757-64. PubMed ID: 9843446
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isolated noncatalytic and catalytic subunits of F1-ATPase exhibit similar, albeit not identical, energetic strategies for recognizing adenosine nucleotides.
    Salcedo G; Cano-Sánchez P; de Gómez-Puyou MT; Velázquez-Campoy A; García-Hernández E
    Biochim Biophys Acta; 2014 Jan; 1837(1):44-50. PubMed ID: 23994287
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The trapping of different conformations of the Escherichia coli F1 ATPase by disulfide bond formation. Effect on nucleotide binding affinities of the catalytic sites.
    Grüber G; Capaldi RA
    J Biol Chem; 1996 Dec; 271(51):32623-8. PubMed ID: 8955091
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of beta-Arg-182, an essential catalytic site residue in Escherichia coli F1-ATPase.
    Nadanaciva S; Weber J; Senior AE
    Biochemistry; 1999 Jun; 38(24):7670-7. PubMed ID: 10387006
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Specific placement of tryptophan in the catalytic sites of Escherichia coli F1-ATPase provides a direct probe of nucleotide binding: maximal ATP hydrolysis occurs with three sites occupied.
    Weber J; Wilke-Mounts S; Lee RS; Grell E; Senior AE
    J Biol Chem; 1993 Sep; 268(27):20126-33. PubMed ID: 8376371
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Features of F(1)-ATPase catalytic and noncatalytic sites revealed by fluorescence lifetimes and acrylamide quenching of specifically inserted tryptophan residues.
    Weber J; Senior AE
    Biochemistry; 2000 May; 39(18):5287-94. PubMed ID: 10819998
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The fluorescence spectrum of the introduced tryptophans in the alpha 3(beta F155W)3gamma subcomplex of the F1-ATPase from the thermophilic Bacillus PS3 cannot be used to distinguish between the number of nucleoside di- and triphosphates bound to catalytic sites.
    Dong K; Ren H; Allison WS
    J Biol Chem; 2002 Mar; 277(11):9540-7. PubMed ID: 11779852
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Specific tryptophan substitution in catalytic sites of Escherichia coli F1-ATPase allows differentiation between bound substrate ATP and product ADP in steady-state catalysis.
    Weber J; Bowman C; Senior AE
    J Biol Chem; 1996 Aug; 271(31):18711-8. PubMed ID: 8702526
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Binding of TNP-ATP and TNP-ADP to the non-catalytic sites of Escherichia coli F1-ATPase.
    Weber J; Senior AE
    FEBS Lett; 1997 Jul; 412(1):169-72. PubMed ID: 9257714
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of the epsilon-subunit on nucleotide binding to Escherichia coli F1-ATPase catalytic sites.
    Weber J; Dunn SD; Senior AE
    J Biol Chem; 1999 Jul; 274(27):19124-8. PubMed ID: 10383416
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The binding mechanism of the yeast F1-ATPase inhibitory peptide: role of catalytic intermediates and enzyme turnover.
    Corvest V; Sigalat C; Venard R; Falson P; Mueller DM; Haraux F
    J Biol Chem; 2005 Mar; 280(11):9927-36. PubMed ID: 15640141
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tryptophan fluorescence provides a direct probe of nucleotide binding in the noncatalytic sites of Escherichia coli F1-ATPase.
    Weber J; Wilke-Mounts S; Grell E; Senior AE
    J Biol Chem; 1994 Apr; 269(15):11261-8. PubMed ID: 8157656
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemo-mechanical coupling in F(1)-ATPase revealed by catalytic site occupancy during catalysis.
    Shimo-Kon R; Muneyuki E; Sakai H; Adachi K; Yoshida M; Kinosita K
    Biophys J; 2010 Apr; 98(7):1227-36. PubMed ID: 20371322
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The presence of phosphate at a catalytic site suppresses the formation of the MgADP-inhibited form of F(1)-ATPase.
    Mitome N; Ono S; Suzuki T; Shimabukuro K; Muneyuki E; Yoshida M
    Eur J Biochem; 2002 Jan; 269(1):53-60. PubMed ID: 11784298
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the location and function of tyrosine beta 331 in the catalytic site of Escherichia coli F1-ATPase.
    Weber J; Lee RS; Grell E; Wise JG; Senior AE
    J Biol Chem; 1992 Jan; 267(3):1712-8. PubMed ID: 1530942
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nucleotide occupancy of F1-ATPase catalytic sites under crystallization conditions.
    Löbau S; Weber J; Senior AE
    FEBS Lett; 1997 Mar; 404(1):15-8. PubMed ID: 9074628
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tryptophan substitutions surrounding the nucleotide in catalytic sites of F1-ATPase.
    Weber J; Wilke-Mounts S; Hammond ST; Senior AE
    Biochemistry; 1998 Sep; 37(35):12042-50. PubMed ID: 9724515
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of conformational changes in chloroplast coupling factor 1 by 8-anilino-1-naphthalene-sulphonate fluorescence changes.
    Pick U; Finel M
    Eur J Biochem; 1983 Oct; 135(3):559-67. PubMed ID: 6225641
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.