These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 17360604)

  • 1. Interfacial plasticity governs strain rate sensitivity and ductility in nanostructured metals.
    Zhu T; Li J; Samanta A; Kim HG; Suresh S
    Proc Natl Acad Sci U S A; 2007 Feb; 104(9):3031-6. PubMed ID: 17360604
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rebuilding the Strain Hardening at a Large Strain in Twinned Au Nanowires.
    Sun J; Han J; Yang Z; Liu H; Song D; Ma A; Fang L
    Nanomaterials (Basel); 2018 Oct; 8(10):. PubMed ID: 30340344
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Strain Hardening and Size Effect in Five-fold Twinned Ag Nanowires.
    Narayanan S; Cheng G; Zeng Z; Zhu Y; Zhu T
    Nano Lett; 2015 Jun; 15(6):4037-44. PubMed ID: 25965858
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In situ nanoindentation study on plasticity and work hardening in aluminium with incoherent twin boundaries.
    Bufford D; Liu Y; Wang J; Wang H; Zhang X
    Nat Commun; 2014 Sep; 5():4864. PubMed ID: 25204688
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dislocation mechanisms and 3D twin architectures generate exceptional strength-ductility-toughness combination in CrCoNi medium-entropy alloy.
    Zhang Z; Sheng H; Wang Z; Gludovatz B; Zhang Z; George EP; Yu Q; Mao SX; Ritchie RO
    Nat Commun; 2017 Feb; 8():14390. PubMed ID: 28218267
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sliding of coherent twin boundaries.
    Wang ZJ; Li QJ; Li Y; Huang LC; Lu L; Dao M; Li J; Ma E; Suresh S; Shan ZW
    Nat Commun; 2017 Oct; 8(1):1108. PubMed ID: 29062092
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deformation mechanisms in nanotwinned metal nanopillars.
    Jang D; Li X; Gao H; Greer JR
    Nat Nanotechnol; 2012 Sep; 7(9):594-601. PubMed ID: 22796745
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hetero interface and twin boundary mediated strengthening in nano-twinned Cu//Ag multilayered materials.
    Zheng Y; Li Q; Zhang J; Ye H; Zhang H; Shen L
    Nanotechnology; 2017 Oct; 28(41):415705. PubMed ID: 28782728
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dislocation nucleation governed softening and maximum strength in nano-twinned metals.
    Li X; Wei Y; Lu L; Lu K; Gao H
    Nature; 2010 Apr; 464(7290):877-80. PubMed ID: 20376146
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Revealing the maximum strength in nanotwinned copper.
    Lu L; Chen X; Huang X; Lu K
    Science; 2009 Jan; 323(5914):607-10. PubMed ID: 19179523
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regain Strain-Hardening in High-Strength Metals by Nanofiller Incorporation at Grain Boundaries.
    Li Z; Wang H; Guo Q; Li Z; Xiong DB; Su Y; Gao H; Li X; Zhang D
    Nano Lett; 2018 Oct; 18(10):6255-6264. PubMed ID: 30193069
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ductile crystalline-amorphous nanolaminates.
    Wang Y; Li J; Hamza AV; Barbee TW
    Proc Natl Acad Sci U S A; 2007 Jul; 104(27):11155-60. PubMed ID: 17592136
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigating the dislocation reactions on Σ3{111} twin boundary during deformation twin nucleation process in an ultrafine-grained high-manganese steel.
    Hung CY; Shimokawa T; Bai Y; Tsuji N; Murayama M
    Sci Rep; 2021 Sep; 11(1):19298. PubMed ID: 34588568
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Blocking effect of twin boundaries on partial dislocation emission from void surfaces.
    Zhang L; Zhou H; Qu S
    Nanoscale Res Lett; 2012 Mar; 7(1):164. PubMed ID: 22385908
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Uniting tensile ductility with ultrahigh strength via composition undulation.
    Li H; Zong H; Li S; Jin S; Chen Y; Cabral MJ; Chen B; Huang Q; Chen Y; Ren Y; Yu K; Han S; Ding X; Sha G; Lian J; Liao X; Ma E; Sun J
    Nature; 2022 Apr; 604(7905):273-279. PubMed ID: 35418634
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High Reversible Strain in Nanotwinned Metals.
    He S; Jiang B; Wang C; Chen C; Duan H; Jin S; Ye H; Lu L; Du K
    ACS Appl Mater Interfaces; 2021 Sep; 13(38):46088-46096. PubMed ID: 34541843
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In situ atomic scale mechanisms of strain-induced twin boundary shear to high angle grain boundary in nanocrystalline Pt.
    Wang L; Teng J; Wu Y; Sha X; Xiang S; Mao S; Yu G; Zhang Z; Zou J; Han X
    Ultramicroscopy; 2018 Dec; 195():69-73. PubMed ID: 30195095
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Manipulating the interfacial structure of nanomaterials to achieve a unique combination of strength and ductility.
    Khalajhedayati A; Pan Z; Rupert TJ
    Nat Commun; 2016 Feb; 7():10802. PubMed ID: 26887444
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrahigh strength and ductility in newly developed materials with coherent nanolamellar architectures.
    Fan L; Yang T; Zhao Y; Luan J; Zhou G; Wang H; Jiao Z; Liu CT
    Nat Commun; 2020 Dec; 11(1):6240. PubMed ID: 33288762
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the real-time atomistic deformation of nano twinned CrCoFeNi high entropy alloy.
    Yan S; H Qin Q; Zhong Z
    Nanotechnology; 2020 Sep; 31(38):385705. PubMed ID: 32503016
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.