These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 17360816)

  • 21. Quantification of motor cortex activity and full-body biomechanics during unconstrained locomotion.
    Prilutsky BI; Sirota MG; Gregor RJ; Beloozerova IN
    J Neurophysiol; 2005 Oct; 94(4):2959-69. PubMed ID: 15888524
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Encoding of reach and grasp by single neurons in premotor cortex is independent of recording site.
    Stark E; Asher I; Abeles M
    J Neurophysiol; 2007 May; 97(5):3351-64. PubMed ID: 17360824
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Optimal control of redundant muscles in step-tracking wrist movements.
    Haruno M; Wolpert DM
    J Neurophysiol; 2005 Dec; 94(6):4244-55. PubMed ID: 16079196
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A method for investigating cortical control of stand and squat in conscious behavioral monkeys.
    Ma C; He J
    J Neurosci Methods; 2010 Sep; 192(1):1-6. PubMed ID: 20600310
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Patterns of spatio-temporal correlations in the neural activity of the cat motor cortex during trained forelimb movements.
    Ghosh S; Putrino D; Burro B; Ring A
    Somatosens Mot Res; 2009 Jun; 26(2):31-49. PubMed ID: 19697261
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Descending systems translate transient cortical commands into a sustained muscle activation signal.
    Shalit U; Zinger N; Joshua M; Prut Y
    Cereb Cortex; 2012 Aug; 22(8):1904-14. PubMed ID: 21965441
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bayesian nonparametric modeling for comparison of single-neuron firing intensities.
    Kottas A; Behseta S
    Biometrics; 2010 Mar; 66(1):277-86. PubMed ID: 19432774
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Resonance tuning in a neuro-musculo-skeletal model of the forearm.
    Verdaasdonk BW; Koopman HF; Van der Helm FC
    Biol Cybern; 2007 Feb; 96(2):165-80. PubMed ID: 17077977
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Coding of movement- and force-related information in primate primary motor cortex: a computational approach.
    Guigon E; Baraduc P; Desmurget M
    Eur J Neurosci; 2007 Jul; 26(1):250-60. PubMed ID: 17573920
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of low-frequency repetitive transcranial magnetic stimulation of the contralesional primary motor cortex on movement kinematics and neural activity in subcortical stroke.
    Nowak DA; Grefkes C; Dafotakis M; Eickhoff S; Küst J; Karbe H; Fink GR
    Arch Neurol; 2008 Jun; 65(6):741-7. PubMed ID: 18541794
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An optimization principle for determining movement duration.
    Tanaka H; Krakauer JW; Qian N
    J Neurophysiol; 2006 Jun; 95(6):3875-86. PubMed ID: 16571740
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The functional role of different neural activation profiles during precision grip: an artificial neural network approach.
    Grandjean B; Hepp-Reymond MC; Maier MA
    J Physiol Paris; 2007; 101(1-3):9-21. PubMed ID: 18023563
    [TBL] [Abstract][Full Text] [Related]  

  • 33. What to do, or how to do it?
    Pesaran B; Movshon JA
    Neuron; 2008 May; 58(3):301-3. PubMed ID: 18466740
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A spectrum from pure post-spike effects to synchrony effects in spike-triggered averages of electromyographic activity during skilled finger movements.
    Schieber MH; Rivlis G
    J Neurophysiol; 2005 Nov; 94(5):3325-41. PubMed ID: 16014801
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Neuronal network models of phase separation between limb CPGs of digging sand crabs.
    Hodge A; Edwards R; Paul DH; van den Driessche P
    Biol Cybern; 2006 Jul; 95(1):55-68. PubMed ID: 16673144
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Three-dimensional, automated, real-time video system for tracking limb motion in brain-machine interface studies.
    Peikon ID; Fitzsimmons NA; Lebedev MA; Nicolelis MA
    J Neurosci Methods; 2009 Jun; 180(2):224-33. PubMed ID: 19464514
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The neural optimal control hierarchy for motor control.
    DeWolf T; Eliasmith C
    J Neural Eng; 2011 Dec; 8(6):065009. PubMed ID: 22056418
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Modeling reaching impairment after stroke using a population vector model of movement control that incorporates neural firing-rate variability.
    Reinkensmeyer DJ; Iobbi MG; Kahn LE; Kamper DG; Takahashi CD
    Neural Comput; 2003 Nov; 15(11):2619-42. PubMed ID: 14577856
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Role of biomechanics and muscle activation strategy in the production of endpoint force patterns in the cat hindlimb.
    Lemay MA; Bhowmik-Stoker M; McConnell GC; Grill WM
    J Biomech; 2007; 40(16):3679-87. PubMed ID: 17692854
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Temporal evolution of both premotor and motor cortical tuning properties reflect changes in limb biomechanics.
    Suminski AJ; Mardoum P; Lillicrap TP; Hatsopoulos NG
    J Neurophysiol; 2015 Apr; 113(7):2812-23. PubMed ID: 25673733
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.