These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 17360818)

  • 1. Neural correlations increase between consecutive processing levels in the auditory system of locusts.
    Vogel A; Ronacher B
    J Neurophysiol; 2007 May; 97(5):3376-85. PubMed ID: 17360818
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Increase of neuronal response variability at higher processing levels as revealed by simultaneous recordings.
    Vogel A; Hennig RM; Ronacher B
    J Neurophysiol; 2005 Jun; 93(6):3548-59. PubMed ID: 15716366
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spike-train variability of auditory neurons in vivo: dynamic responses follow predictions from constant stimuli.
    Schaette R; Gollisch T; Herz AV
    J Neurophysiol; 2005 Jun; 93(6):3270-81. PubMed ID: 15689392
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temporal integration at consecutive processing stages in the auditory pathway of the grasshopper.
    Wirtssohn S; Ronacher B
    J Neurophysiol; 2015 Apr; 113(7):2280-8. PubMed ID: 25609104
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temperature dependence of temporal resolution in an insect nervous system.
    Franz A; Ronacher B
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2002 May; 188(4):261-71. PubMed ID: 12012097
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced sound perception by widespread-onset neuronal responses in auditory cortex.
    Hoshino O
    Neural Comput; 2007 Dec; 19(12):3310-34. PubMed ID: 17970655
    [TBL] [Abstract][Full Text] [Related]  

  • 7. First-spike latency of auditory neurons revisited.
    Heil P
    Curr Opin Neurobiol; 2004 Aug; 14(4):461-7. PubMed ID: 15321067
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiparametric corticofugal modulation of collicular duration-tuned neurons: modulation in the amplitude domain.
    Ma X; Suga N
    J Neurophysiol; 2007 May; 97(5):3722-30. PubMed ID: 17376844
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reduction of information redundancy in the ascending auditory pathway.
    Chechik G; Anderson MJ; Bar-Yosef O; Young ED; Tishby N; Nelken I
    Neuron; 2006 Aug; 51(3):359-68. PubMed ID: 16880130
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temporal correlation between auditory neurons and the hippocampal theta rhythm induced by novel stimulations in awake guinea pigs.
    Liberman T; Velluti RA; Pedemonte M
    Brain Res; 2009 Nov; 1298():70-7. PubMed ID: 19716364
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Common synaptic drive to segmentally homologous interneurons in the locust.
    Boyan G
    J Comp Neurol; 1992 Jul; 321(4):544-54. PubMed ID: 1506484
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tonotopic control of auditory thalamus frequency tuning by reticular thalamic neurons.
    Cotillon-Williams N; Huetz C; Hennevin E; Edeline JM
    J Neurophysiol; 2008 Mar; 99(3):1137-51. PubMed ID: 18160422
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temporal pattern recognition based on instantaneous spike rate coding in a simple auditory system.
    Nabatiyan A; Poulet JF; de Polavieja GG; Hedwig B
    J Neurophysiol; 2003 Oct; 90(4):2484-93. PubMed ID: 14534273
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reprint of "frequency tuning and firing pattern properties of auditory thalamic neurons: an in vivo intracellular recording from the guinea pig" [Neuroscience 151 (2008) 293-302].
    Zhang Z; Yu YQ; Liu CH; Chan YS; He J
    Neuroscience; 2008 Jun; 154(1):273-82. PubMed ID: 18555163
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inferior colliculus responses to multichannel microstimulation of the ventral cochlear nucleus: implications for auditory brain stem implants.
    Shivdasani MN; Mauger SJ; Rathbone GD; Paolini AG
    J Neurophysiol; 2008 Jan; 99(1):1-13. PubMed ID: 17928560
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oscillating neurons in the cochlear nucleus: I. Experimental basis of a simulation paradigm.
    Bahmer A; Langner G
    Biol Cybern; 2006 Oct; 95(4):371-9. PubMed ID: 16847666
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A physiological model for the stimulus dependence of first-spike latency of auditory-nerve fibers.
    Neubauer H; Heil P
    Brain Res; 2008 Jul; 1220():208-23. PubMed ID: 17936252
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The information transmitted by spike patterns in single neurons.
    Eyherabide HG; Samengo I
    J Physiol Paris; 2010; 104(3-4):147-55. PubMed ID: 19944153
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A biologically motivated neural network for phase extraction from complex sounds.
    Borst M; Langner G; Palm G
    Biol Cybern; 2004 Feb; 90(2):98-104. PubMed ID: 14999476
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Seasonal changes in frequency tuning and temporal processing in single neurons in the frog auditory midbrain.
    Goense JB; Feng AS
    J Neurobiol; 2005 Oct; 65(1):22-36. PubMed ID: 16003763
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.