BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

615 related articles for article (PubMed ID: 17361287)

  • 1. Scaling method for fast Monte Carlo simulation of diffuse reflectance spectra from multilayered turbid media.
    Liu Q; Ramanujam N
    J Opt Soc Am A Opt Image Sci Vis; 2007 Apr; 24(4):1011-25. PubMed ID: 17361287
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of the third-order parameter on diffuse reflectance at small source-detector separations.
    Tian H; Liu Y; Wang L
    Opt Lett; 2006 Apr; 31(7):933-5. PubMed ID: 16599216
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sequential estimation of optical properties of a two-layered epithelial tissue model from depth-resolved ultraviolet-visible diffuse reflectance spectra.
    Liu Q; Ramanujam N
    Appl Opt; 2006 Jul; 45(19):4776-90. PubMed ID: 16799693
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of simplified Monte Carlo simulation and diffusion approximation for the fluorescence signal from phantoms with typical mouse tissue optical properties.
    Ma G; Delorme JF; Gallant P; Boas DA
    Appl Opt; 2007 Apr; 46(10):1686-92. PubMed ID: 17356611
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diffuse light propagation in a turbid medium with varying refractive index: Monte Carlo modeling in a spherically symmetrical geometry.
    Shendeleva ML; Molloy JA
    Appl Opt; 2006 Sep; 45(27):7018-25. PubMed ID: 16946780
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monte Carlo study of coherent diffuse photon transport in a homogeneous turbid medium: a degree-of-coherence based approach.
    Moon S; Kim D; Sim E
    Appl Opt; 2008 Jan; 47(3):336-45. PubMed ID: 18204720
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Perturbation and differential Monte Carlo methods for measurement of optical properties in a layered epithelial tissue model.
    Seo I; You JS; Hayakawa CK; Venugopalan V
    J Biomed Opt; 2007; 12(1):014030. PubMed ID: 17343505
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Noninvasive measurement of scattering anisotropy in turbid materials by nonnormal incident illumination.
    Joshi N; Donner C; Jensen HW
    Opt Lett; 2006 Apr; 31(7):936-8. PubMed ID: 16599217
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Real-time absorption and scattering characterization of slab-shaped turbid samples obtained by a combination of angular and spatially resolved measurements.
    Dam JS; Yavari N; Sørensen S; Andersson-Engels S
    Appl Opt; 2005 Jul; 44(20):4281-90. PubMed ID: 16045216
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid simulation of steady-state spatially resolved reflectance and transmittance profiles of multilayered turbid materials.
    Donner C; Jensen HW
    J Opt Soc Am A Opt Image Sci Vis; 2006 Jun; 23(6):1382-90. PubMed ID: 16715157
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hybrid method for fast Monte Carlo simulation of diffuse reflectance from a multilayered tissue model with tumor-like heterogeneities.
    Zhu C; Liu Q
    J Biomed Opt; 2012 Jan; 17(1):010501. PubMed ID: 22352630
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controlled Monte Carlo method for light propagation in tissue of semi-infinite geometry.
    Chen N
    Appl Opt; 2007 Apr; 46(10):1597-603. PubMed ID: 17356601
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combined optical intensity and polarization methodology for analyte concentration determination in simulated optically clear and turbid biological media.
    Wood MF; Côté D; Vitkin IA
    J Biomed Opt; 2008; 13(4):044037. PubMed ID: 19021364
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of scattering volume fraction and particle size distribution in the superficial layer of a turbid medium by using diffuse reflectance spectroscopy.
    Fawzy YS; Zeng H
    Appl Opt; 2006 Jun; 45(16):3902-12. PubMed ID: 16724156
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monte Carlo algorithm for efficient simulation of time-resolved fluorescence in layered turbid media.
    Liebert A; Wabnitz H; Zołek N; Macdonald R
    Opt Express; 2008 Aug; 16(17):13188-202. PubMed ID: 18711557
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Light diffusion in N-layered turbid media: frequency and time domains.
    Liemert A; Kienle A
    J Biomed Opt; 2010; 15(2):025002. PubMed ID: 20459243
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Light diffusion in N-layered turbid media: steady-state domain.
    Liemert A; Kienle A
    J Biomed Opt; 2010; 15(2):025003. PubMed ID: 20459244
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determination of the optical properties of anisotropic biological media using an isotropic diffusion model.
    Kienle A; Wetzel C; Bassi A; Comelli D; Taroni P; Pifferi A
    J Biomed Opt; 2007; 12(1):014026. PubMed ID: 17343501
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Scaling property of the diffusion equation for light in a turbid medium with varying refractive index.
    Shendeleva ML; Molloy JA
    J Opt Soc Am A Opt Image Sci Vis; 2007 Sep; 24(9):2902-10. PubMed ID: 17767262
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Depolarization of light in turbid media: a scattering event resolved Monte Carlo study.
    Guo X; Wood MF; Ghosh N; Vitkin IA
    Appl Opt; 2010 Jan; 49(2):153-62. PubMed ID: 20062501
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 31.