BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 17361365)

  • 1. The effect of growth medium on the antioxidant defense of Saccharomyces cerevisiae.
    Macierzyńska E; Grzelak A; Bartosz G
    Cell Mol Biol Lett; 2007 Sep; 12(3):448-56. PubMed ID: 17361365
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Effect of iron ions on the antioxidant enzyme activities in yeast Saccharomyces cerevisiae].
    Hospodar'ov DV; Lushchak VI
    Ukr Biokhim Zh (1999); 2004; 76(6):100-5. PubMed ID: 16350751
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic aspects of aspirin-induced apoptosis in yeast.
    Sapienza K; Balzan R
    FEMS Yeast Res; 2005 Dec; 5(12):1207-13. PubMed ID: 15982932
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Catalases protect cellular proteins from oxidative modification in Saccharomyces cerevisiae.
    Lushchak VI; Gospodaryov DV
    Cell Biol Int; 2005 Mar; 29(3):187-92. PubMed ID: 15893481
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Possible role of superoxide dismutases in the yeast Saccharomyces cerevisiae under respiratory conditions.
    Lushchak V; Semchyshyn H; Mandryk S; Lushchak O
    Arch Biochem Biophys; 2005 Sep; 441(1):35-40. PubMed ID: 16084798
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of hydrogen peroxide on antioxidant enzyme activities in Saccharomyces cerevisiae is strain-specific.
    Bayliak M; Semchyshyn H; Lushchak V
    Biochemistry (Mosc); 2006 Sep; 71(9):1013-20. PubMed ID: 17009956
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Decreased antioxidant defense during replicative aging of the yeast Saccharomyces cerevisiae studied using the 'baby machine' method.
    Grzelak A; Skierski J; Bartosz G
    FEBS Lett; 2001 Mar; 492(1-2):123-6. PubMed ID: 11248249
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lack of evidence of oxidative damage in antioxidant-deficient strains of Saccharomyces cerevisiae.
    Fortuniak A; Jakubowski W; Biliński T; Bartosz G
    Biochem Mol Biol Int; 1996 May; 38(6):1271-6. PubMed ID: 8739049
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antioxidant activity of L-ascorbic acid in wild-type and superoxide dismutase deficient strains of Saccharomyces cerevisiae.
    Saffi J; Sonego L; Varela QD; Salvador M
    Redox Rep; 2006; 11(4):179-84. PubMed ID: 16984741
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [The role of catalases in protection of proteins against oxidation in Saccharomyces cerevisiae utilizing ethanol as a carbon source].
    Hospodar'ov DV; Mandryk SIa; Lushchak VI
    Ukr Biokhim Zh (1999); 2005; 77(2):162-5. PubMed ID: 16335251
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glutathione peroxidase induction protects Saccharomyces cerevisiae sod1deltasod2delta double mutants against oxidative damage.
    Manfredini V; Roehrs R; Peralba MC; Henriques JA; Saffi J; Ramos AL; Benfato MS
    Braz J Med Biol Res; 2004 Feb; 37(2):159-65. PubMed ID: 14762569
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Luminol luminescence induced by oxidants in antioxidant-deficient yeasts Saccharomyces cerevisiae.
    Jakubowski W; Ertel D; Biliński T; Kedziora J; Bartosz G
    Biochem Mol Biol Int; 1998 Jun; 45(1):191-203. PubMed ID: 9635143
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Growth on ethanol results in co-ordinated Saccharomyces cerevisiae response to inactivation of genes encoding superoxide dismutases.
    Lushchak OV; Semchyshyn HM; Lushchak VI
    Redox Rep; 2007; 12(4):181-8. PubMed ID: 17705988
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of two putative nitroreductases, Frm2p and Hbn1p, in the oxidative stress response in Saccharomyces cerevisiae.
    de Oliveira IM; Zanotto-Filho A; Moreira JC; Bonatto D; Henriques JA
    Yeast; 2010 Feb; 27(2):89-102. PubMed ID: 19904831
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aspirin commits yeast cells to apoptosis depending on carbon source.
    Balzan R; Sapienza K; Galea DR; Vassallo N; Frey H; Bannister WH
    Microbiology (Reading); 2004 Jan; 150(Pt 1):109-115. PubMed ID: 14702403
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fructose compared with glucose is more a potent glycoxidation agent in vitro, but not under carbohydrate-induced stress in vivo: potential role of antioxidant and antiglycation enzymes.
    Semchyshyn HM; Miedzobrodzki J; Bayliak MM; Lozinska LM; Homza BV
    Carbohydr Res; 2014 Jan; 384():61-9. PubMed ID: 24361593
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Role of Cu, Zn- and Mn-containing superoxide dismutases during the yeast Saccharomyces cerevisiae growing on ethanol and glycerol].
    Mandryk SIa; Lushchak OV; Semchyshyn HM; Lushchak VI
    Mikrobiol Z; 2007; 69(2):35-42. PubMed ID: 17494333
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Response to different oxidants of Saccharomyces cerevisiae ure2Delta mutant.
    Todorova TT; Petrova VY; Vuilleumier S; Kujumdzieva AV
    Arch Microbiol; 2009 Nov; 191(11):837-45. PubMed ID: 19777209
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of increasing oxygen partial pressure on Saccharomyces cerevisiae growth and antioxidant and enzyme productions.
    Cui N; Pozzobon V; Guerin C; Perré P
    Appl Microbiol Biotechnol; 2020 Sep; 104(18):7815-7826. PubMed ID: 32789743
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Iron, copper, and manganese complexes with in vitro superoxide dismutase and/or catalase activities that keep Saccharomyces cerevisiae cells alive under severe oxidative stress.
    Ribeiro TP; Fernandes C; Melo KV; Ferreira SS; Lessa JA; Franco RW; Schenk G; Pereira MD; Horn A
    Free Radic Biol Med; 2015 Mar; 80():67-76. PubMed ID: 25511255
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.