These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
299 related articles for article (PubMed ID: 17361564)
21. Usefulness of blood vessels as a DNA source for PCR-based genotyping based on two cases of corpse dismemberment. Shintani-Ishida K; Harada K; Nakajima M; Yoshida K Leg Med (Tokyo); 2010 Jan; 12(1):8-12. PubMed ID: 19853489 [TBL] [Abstract][Full Text] [Related]
22. Sequential multiplex amplification: utility in forensic casework with minimal amounts of DNA and partially degraded samples. Lorente M; Lorente JA; Alvarez JC; Budowle B; Wilson MR; Villanueva E J Forensic Sci; 1997 Sep; 42(5):923-5. PubMed ID: 9304844 [TBL] [Abstract][Full Text] [Related]
23. Evaluation of a new experimental kit for the extraction of DNA from bones and teeth using a non-powder method. Kitayama T; Ogawa Y; Fujii K; Nakahara H; Mizuno N; Sekiguchi K; Kasai K; Yurino N; Yokoi T; Fukuma Y; Yamamoto K; Oki T; Asamura H; Fukushima H Leg Med (Tokyo); 2010 Mar; 12(2):84-9. PubMed ID: 20110185 [TBL] [Abstract][Full Text] [Related]
24. STR-genotyping of archaeological human bone: experimental design to improve reproducibility by optimisation of DNA extraction. Schmerer WM; Hummel S; Herrmann B Anthropol Anz; 2000 Mar; 58(1):29-35. PubMed ID: 10816783 [TBL] [Abstract][Full Text] [Related]
25. A new multiplex-PCR comprising autosomal and y-specific STRs and mitochondrial DNA to analyze highly degraded material. von Wurmb-Schwark N; Preusse-Prange A; Heinrich A; Simeoni E; Bosch T; Schwark T Forensic Sci Int Genet; 2009 Mar; 3(2):96-103. PubMed ID: 19215878 [TBL] [Abstract][Full Text] [Related]
26. [Identification analysis using PCR of fresh or fixed and paraffin wax embedded tissue]. Pawłowski R Pol Tyg Lek; 1995 Sep; 50(36-39):16-20. PubMed ID: 8650022 [TBL] [Abstract][Full Text] [Related]
27. Dual-domain microchip-based process for volume reduction solid phase extraction of nucleic acids from dilute, large volume biological samples. Reedy CR; Hagan KA; Strachan BC; Higginson JJ; Bienvenue JM; Greenspoon SA; Ferrance JP; Landers JP Anal Chem; 2010 Jul; 82(13):5669-78. PubMed ID: 20527816 [TBL] [Abstract][Full Text] [Related]
28. Extraction, evaluation, and amplification of DNA from decalcified and undecalcified United States Civil War bone. Fisher DL; Holland MM; Mitchell L; Sledzik PS; Wilcox AW; Wadhams M; Weedn VW J Forensic Sci; 1993 Jan; 38(1):60-8. PubMed ID: 8426158 [TBL] [Abstract][Full Text] [Related]
29. Molecular characterisation of the nucleic acids recovered from aged forensic samples. Previderè C; Micheletti P; Perossa R; Grignani P; Fattorini P Int J Legal Med; 2002 Dec; 116(6):334-9. PubMed ID: 12461640 [TBL] [Abstract][Full Text] [Related]
30. A modified mini-primer set for analyzing mitochondrial DNA control region sequences from highly degraded forensic samples. Lee HY; Kim NY; Park MJ; Yang WI; Shin KJ Biotechniques; 2008 Apr; 44(4):555-6, 558. PubMed ID: 18476821 [TBL] [Abstract][Full Text] [Related]
31. A quadruplex real-time qPCR assay for the simultaneous assessment of total human DNA, human male DNA, DNA degradation and the presence of PCR inhibitors in forensic samples: a diagnostic tool for STR typing. Hudlow WR; Chong MD; Swango KL; Timken MD; Buoncristiani MR Forensic Sci Int Genet; 2008 Mar; 2(2):108-25. PubMed ID: 19083806 [TBL] [Abstract][Full Text] [Related]
32. Fungal DNA challenge in human STR typing of bone samples. Calacal GC; De Ungria MC J Forensic Sci; 2005 Nov; 50(6):1394-401. PubMed ID: 16382834 [TBL] [Abstract][Full Text] [Related]
33. Direct comparison of post-28-cycle PCR purification and modified capillary electrophoresis methods with the 34-cycle "low copy number" (LCN) method for analysis of trace forensic DNA samples. Forster L; Thomson J; Kutranov S Forensic Sci Int Genet; 2008 Sep; 2(4):318-28. PubMed ID: 19083842 [TBL] [Abstract][Full Text] [Related]
34. [Study of DNA identification in burned bones]. Ye J; Ji AQ; Zhao XC Fa Yi Xue Za Zhi; 2004; 20(3):155-9. PubMed ID: 15495809 [TBL] [Abstract][Full Text] [Related]
35. Simple and highly effective DNA extraction methods from old skeletal remains using silica columns. Lee HY; Park MJ; Kim NY; Sim JE; Yang WI; Shin KJ Forensic Sci Int Genet; 2010 Oct; 4(5):275-80. PubMed ID: 20457067 [TBL] [Abstract][Full Text] [Related]
36. The effects of skeletal preparation techniques on DNA from human and non-human bone. Rennick SL; Fenton TW; Foran DR J Forensic Sci; 2005 Sep; 50(5):1016-9. PubMed ID: 16225205 [TBL] [Abstract][Full Text] [Related]
37. DNA extraction method from bones using Maxwell® 16. Karija Vlahović M; Kubat M Leg Med (Tokyo); 2012 Sep; 14(5):272-5. PubMed ID: 22626613 [TBL] [Abstract][Full Text] [Related]
38. STR-genotyping from human medieval tooth and bone samples. Ricaut FX; Keyser-Tracqui C; Crubézy E; Ludes B Forensic Sci Int; 2005 Jun; 151(1):31-5. PubMed ID: 15935940 [TBL] [Abstract][Full Text] [Related]
39. Comparison of two whole genome amplification methods for STR genotyping of LCN and degraded DNA samples. Ballantyne KN; van Oorschot RA; Mitchell RJ Forensic Sci Int; 2007 Feb; 166(1):35-41. PubMed ID: 16687226 [TBL] [Abstract][Full Text] [Related]
40. Skeletal remains presumed submerged in water for three years identified using PCR-STR analysis. Crainic K; Paraire F; Leterreux M; Durigon M; de Mazancourt P J Forensic Sci; 2002 Sep; 47(5):1025-7. PubMed ID: 12353539 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]