BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

576 related articles for article (PubMed ID: 17362059)

  • 1. Interpolating moving least-squares methods for fitting potential energy surfaces: an application to the H2CN unimolecular reaction.
    Guo Y; Harding LB; Wagner AF; Minkoff M; Thompson DL
    J Chem Phys; 2007 Mar; 126(10):104105. PubMed ID: 17362059
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interpolating moving least-squares methods for fitting potential energy surfaces: using classical trajectories to explore configuration space.
    Dawes R; Passalacqua A; Wagner AF; Sewell TD; Minkoff M; Thompson DL
    J Chem Phys; 2009 Apr; 130(14):144107. PubMed ID: 19368429
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interpolating moving least-squares methods for fitting potential energy surfaces: computing high-density potential energy surface data from low-density ab initio data points.
    Dawes R; Thompson DL; Guo Y; Wagner AF; Minkoff M
    J Chem Phys; 2007 May; 126(18):184108. PubMed ID: 17508793
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ab initio wavenumber accurate spectroscopy: 1CH2 and HCN vibrational levels on automatically generated IMLS potential energy surfaces.
    Dawes R; Wagner AF; Thompson DL
    J Phys Chem A; 2009 Apr; 113(16):4709-21. PubMed ID: 19371124
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of interpolating moving least squares fitting to hypervelocity collision dynamics: O(3P) + HCl.
    Camden JP; Dawes R; Thompson DL
    J Phys Chem A; 2009 Apr; 113(16):4626-30. PubMed ID: 19371121
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interpolating moving least-squares methods for fitting potential energy surfaces: a strategy for efficient automatic data point placement in high dimensions.
    Dawes R; Thompson DL; Wagner AF; Minkoff M
    J Chem Phys; 2008 Feb; 128(8):084107. PubMed ID: 18315033
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interpolating moving least-squares methods for fitting potential energy surfaces: Analysis of an application to a six-dimensional system.
    Maisuradze GG; Kawano A; Thompson DL; Wagner AF; Minkoff M
    J Chem Phys; 2004 Dec; 121(21):10329-38. PubMed ID: 15549910
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interpolating moving least-squares methods for fitting potential energy surfaces: applications to classical dynamics calculations.
    Guo Y; Kawano A; Thompson DL; Wagner AF; Minkoff M
    J Chem Phys; 2004 Sep; 121(11):5091-7. PubMed ID: 15352800
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interpolating moving least-squares methods for fitting potential-energy surfaces: further improvement of efficiency via cutoff strategies.
    Kawano A; Tokmakov IV; Thompson DL; Wagner AF; Minkoff M
    J Chem Phys; 2006 Feb; 124(5):054105. PubMed ID: 16468849
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interpolating moving least-squares methods for fitting potential energy surfaces: Improving efficiency via local approximants.
    Guo Y; Tokmakov I; Thompson DL; Wagner AF; Minkoff M
    J Chem Phys; 2007 Dec; 127(21):214106. PubMed ID: 18067348
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ab initio potential energy and dipole moment surfaces for H5O2 +.
    Huang X; Braams BJ; Bowman JM
    J Chem Phys; 2005 Jan; 122(4):44308. PubMed ID: 15740249
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The hydrogen abstraction reaction H + CH4. I. New analytical potential energy surface based on fitting to ab initio calculations.
    Corchado JC; Bravo JL; Espinosa-Garcia J
    J Chem Phys; 2009 May; 130(18):184314. PubMed ID: 19449928
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular dynamics investigation of the bimolecular reaction BeH + H(2) --> BeH(2) + H on an ab initio potential-energy surface obtained using neural network methods with both potential and gradient accuracy determination.
    Le HM; Raff LM
    J Phys Chem A; 2010 Jan; 114(1):45-53. PubMed ID: 19852450
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An ab initio based global potential energy surface describing CH5+ --> CH3+ + H2.
    Jin Z; Braams BJ; Bowman JM
    J Phys Chem A; 2006 Feb; 110(4):1569-74. PubMed ID: 16435818
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ab initio potential energy and dipole moment surfaces of (H2O)2.
    Huang X; Braams BJ; Bowman JM
    J Phys Chem A; 2006 Jan; 110(2):445-51. PubMed ID: 16405316
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nitrous oxide dimer: a new potential energy surface and rovibrational spectrum of the nonpolar isomer.
    Dawes R; Wang XG; Jasper AW; Carrington T
    J Chem Phys; 2010 Oct; 133(13):134304. PubMed ID: 20942536
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A classical trajectory study of the intramolecular dynamics, isomerization, and unimolecular dissociation of HO2.
    Perry JW; Dawes R; Wagner AF; Thompson DL
    J Chem Phys; 2013 Aug; 139(8):084319. PubMed ID: 24007009
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ab initio and analytic intermolecular potentials for Ar-CH(3)OH.
    Tasić U; Alexeev Y; Vayner G; Crawford TD; Windus TL; Hase WL
    Phys Chem Chem Phys; 2006 Oct; 8(40):4678-84. PubMed ID: 17047766
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular dissociation of hydrogen peroxide (HOOH) on a neural network ab initio potential surface with a new configuration sampling method involving gradient fitting.
    Le HM; Huynh S; Raff LM
    J Chem Phys; 2009 Jul; 131(1):014107. PubMed ID: 19586096
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Classical trajectory study of the dynamics of the reaction of Cl atoms with ethane.
    Greaves SJ; Orr-Ewing AJ; Troya D
    J Phys Chem A; 2008 Oct; 112(39):9387-95. PubMed ID: 18636702
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.