These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1437 related articles for article (PubMed ID: 17362109)

  • 1. Gaussian excitations model for glass-former dynamics and thermodynamics.
    Matyushov DV; Angell CA
    J Chem Phys; 2007 Mar; 126(9):094501. PubMed ID: 17362109
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two-Gaussian excitations model for the glass transition.
    Matyushov DV; Angell CA
    J Chem Phys; 2005 Jul; 123(3):34506. PubMed ID: 16080743
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermodynamics and dynamics of a monoatomic glass former. Constant pressure and constant volume behavior.
    Kapko V; Matyushov DV; Angell CA
    J Chem Phys; 2008 Apr; 128(14):144505. PubMed ID: 18412457
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A thermodynamic connection to the fragility of glass-forming liquids.
    Martinez LM; Angell CA
    Nature; 2001 Apr; 410(6829):663-7. PubMed ID: 11287947
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Non-Gaussian energy landscape of a simple model for strong network-forming liquids: Accurate evaluation of the configurational entropy.
    Moreno AJ; Saika-Voivod I; Zaccarelli E; La Nave E; Buldyrev SV; Tartaglia P; Sciortino F
    J Chem Phys; 2006 May; 124(20):204509. PubMed ID: 16774355
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The relationship between fragility, configurational entropy and the potential energy landscape of glass-forming liquids.
    Sastry S
    Nature; 2001 Jan; 409(6817):164-7. PubMed ID: 11196634
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A simple model of entropy relaxation for explaining effective activation energy behavior below the glass transition temperature.
    Bisquert J; Henn F; Giuntini JC
    J Chem Phys; 2005 Mar; 122(9):094507. PubMed ID: 15836150
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fragile-to-strong transition and polyamorphism in the energy landscape of liquid silica.
    Saika-Voivod I; Poole PH; Sciortino F
    Nature; 2001 Aug; 412(6846):514-7. PubMed ID: 11484046
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessing thermodynamic-dynamic relationships for waterlike liquids.
    Johnson ME; Head-Gordon T
    J Chem Phys; 2009 Jun; 130(21):214510. PubMed ID: 19508079
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermodynamics and dynamics of metallic glass formers: their correlation for the investigation on potential energy landscape.
    Hu L; Bian X; Wang W; Liu G; Jia Y
    J Phys Chem B; 2005 Jul; 109(28):13737-42. PubMed ID: 16852721
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A macroscopic model that connects the molar excess entropy of a supercooled liquid near its glass transition temperature to its viscosity.
    Matsuoka H
    J Chem Phys; 2012 Nov; 137(20):204506. PubMed ID: 23206018
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computing the viscosity of supercooled liquids. II. Silica and strong-fragile crossover behavior.
    Kushima A; Lin X; Li J; Qian X; Eapen J; Mauro JC; Diep P; Yip S
    J Chem Phys; 2009 Oct; 131(16):164505. PubMed ID: 19894954
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Configurational entropy of polar glass formers and the effect of electric field on glass transition.
    Matyushov DV
    J Chem Phys; 2016 Jul; 145(3):034504. PubMed ID: 27448893
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of the entropy theory of glass formation to poly(alpha-olefins).
    Stukalin EB; Douglas JF; Freed KF
    J Chem Phys; 2009 Sep; 131(11):114905. PubMed ID: 19778147
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Adam-Gibbs equation and the out-of-equilibrium alpha relaxation of glass forming systems.
    Goitiandia L; Alegria A
    J Chem Phys; 2004 Jul; 121(3):1636-43. PubMed ID: 15260712
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The protein "glass" transition and the role of the solvent.
    Ngai KL; Capaccioli S; Shinyashiki N
    J Phys Chem B; 2008 Mar; 112(12):3826-32. PubMed ID: 18318525
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Critical dynamics of dimers: implications for the glass transition.
    Das D; Farrell G; Kondev J; Chakraborty B
    J Phys Chem B; 2005 Nov; 109(45):21413-8. PubMed ID: 16853778
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A thermodynamic approach to the fragility of glass-forming polymers.
    Cangialosi D; Alegría A; Colmenero J
    J Chem Phys; 2006 Jan; 124(2):024906. PubMed ID: 16422647
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Correlation between thermodynamic and kinetic fragilities in nonpolymeric glass-forming liquids.
    Senkov ON; Miracle DB
    J Chem Phys; 2008 Mar; 128(12):124508. PubMed ID: 18376944
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heat capacity, enthalpy fluctuations, and configurational entropy in broken ergodic systems.
    Mauro JC; Loucks RJ; Sen S
    J Chem Phys; 2010 Oct; 133(16):164503. PubMed ID: 21033801
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 72.