These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 17362412)

  • 1. Modeling individual cell lag time distributions for Listeria monocytogenes.
    Standaert AR; Francois K; Devlieghere F; Debevere J; Van Impe JF; Geeraerd AH
    Risk Anal; 2007 Feb; 27(1):241-54. PubMed ID: 17362412
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of environmental parameters (temperature, pH and a(w)) on the individual cell lag phase and generation time of Listeria monocytogenes.
    Francois K; Devlieghere F; Standaert AR; Geeraerd AH; Van Impe JF; Debevere J
    Int J Food Microbiol; 2006 May; 108(3):326-35. PubMed ID: 16488043
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modelling the individual cell lag time distributions of Listeria monocytogenes as a function of the physiological state and the growth conditions.
    Guillier L; Augustin JC
    Int J Food Microbiol; 2006 Oct; 111(3):241-51. PubMed ID: 16857284
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modelling the individual cell lag phase: effect of temperature and pH on the individual cell lag distribution of Listeria monocytogenes.
    Francois K; Devlieghere F; Smet K; Standaert AR; Geeraerd AH; Van Impe JF; Debevere J
    Int J Food Microbiol; 2005 Apr; 100(1-3):41-53. PubMed ID: 15854691
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cell division theory and individual-based modeling of microbial lag: part I. The theory of cell division.
    Dens EJ; Bernaerts K; Standaert AR; Van Impe JF
    Int J Food Microbiol; 2005 Jun; 101(3):303-18. PubMed ID: 15925713
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Risk assessment of Listeria monocytogenes: impact of individual cell variability on the exposure assessment step.
    Francois K; Devlieghere F; Uyttendaele M; Debevere J
    Risk Anal; 2006 Feb; 26(1):105-14. PubMed ID: 16492184
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of preincubation temperature and pH on the individual cell lag phase of Listeria monocytogenes, cultured at refrigeration temperatures.
    Francois K; Valero A; Geeraerd AH; Van Impe JF; Debevere J; García-Gimeno RM; Zurera G; Devlieghere F
    Food Microbiol; 2007 Feb; 24(1):32-43. PubMed ID: 16943092
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of probabilistic and deterministic predictions of time to growth of Listeria monocytogenes as affected by pH and temperature in food.
    Guevara L; Martínez A; Fernández PS; Muñoz-Cuevas M
    Foodborne Pathog Dis; 2011 Jan; 8(1):141-8. PubMed ID: 20932086
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of pH, water activity and acetic acid concentration on Listeria monocytogenes at 7 degrees C: data collection for the development of a growth/no growth model.
    Vermeulen A; Gysemans KP; Bernaerts K; Geeraerd AH; Van Impe JF; Debevere J; Devlieghere F
    Int J Food Microbiol; 2007 Mar; 114(3):332-41. PubMed ID: 17184866
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of time to growth of Listeria monocytogenes using Monte Carlo simulation or regression analysis, influenced by sublethal heat and recovery conditions.
    Muñoz M; Guevara L; Palop A; Fernández PS
    Food Microbiol; 2010 Jun; 27(4):468-75. PubMed ID: 20417395
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study of the effect of lethal and sublethal pH and a(w) stresses on the inactivation or growth of Listeria monocytogenes and Salmonella Typhimurium.
    Tiganitas A; Zeaki N; Gounadaki AS; Drosinos EH; Skandamis PN
    Int J Food Microbiol; 2009 Aug; 134(1-2):104-12. PubMed ID: 19356819
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inactivation of Escherichia coli, Listeria monocytogenes and Yersinia enterocolitica in fermented sausages during maturation/storage.
    Lindqvist R; Lindblad M
    Int J Food Microbiol; 2009 Jan; 129(1):59-67. PubMed ID: 19064299
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of primary predictive models to study the growth of Listeria monocytogenes at low temperatures in liquid cultures and selection of fastest growing ribotypes in meat and turkey product slurries.
    Pal A; Labuza TP; Diez-Gonzalez F
    Food Microbiol; 2008 May; 25(3):460-70. PubMed ID: 18355671
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Product unit neural network models for predicting the growth limits of Listeria monocytogenes.
    Valero A; Hervás C; García-Gimeno RM; Zurera G
    Food Microbiol; 2007 Aug; 24(5):452-64. PubMed ID: 17367678
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploring the performance of logistic regression model types on growth/no growth data of Listeria monocytogenes.
    Gysemans KP; Bernaerts K; Vermeulen A; Geeraerd AH; Debevere J; Devlieghere F; Van Impe JF
    Int J Food Microbiol; 2007 Mar; 114(3):316-31. PubMed ID: 17239980
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combined physico-chemical and water transfer modelling to predict bacterial growth during food processes.
    Lebert I; Dussap CG; Lebert A
    Int J Food Microbiol; 2005 Jul; 102(3):305-22. PubMed ID: 16014298
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Indirect measurement of the lag time distribution of single cells of Listeria innocua in food.
    D'Arrigo M; García de Fernando GD; Velasco de Diego R; Ordóñez JA; George SM; Pin C
    Appl Environ Microbiol; 2006 Apr; 72(4):2533-8. PubMed ID: 16597954
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stochastically modeling Listeria monocytogenes growth in farm tank milk.
    Albert I; Pouillot R; Denis JB
    Risk Anal; 2005 Oct; 25(5):1171-85. PubMed ID: 16297223
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Connection between stochastic and deterministic modelling of microbial growth.
    Kutalik Z; Razaz M; Baranyi J
    J Theor Biol; 2005 Jan; 232(2):285-99. PubMed ID: 15530497
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Meta-analysis of food safety information based on a combination of a relational database and a predictive modeling tool.
    Vialette M; Pinon A; Leporq B; Dervin C; Membré JM
    Risk Anal; 2005 Feb; 25(1):75-83. PubMed ID: 15787758
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.