These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

61 related articles for article (PubMed ID: 1736285)

  • 1. Structural basis for the nucleic acid binding cooperativity of bacteriophage T4 gene 32 protein: the (Lys/Arg)3(Ser/Thr)2 (LAST) motif.
    Casas-Finet JR; Fischer KR; Karpel RL
    Proc Natl Acad Sci U S A; 1992 Feb; 89(3):1050-4. PubMed ID: 1736285
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthetic macromolecular peptide-mimetics with amino acid substructure residues as protein stabilising excipients.
    Foralosso R; Kopiasz RJ; Alexander C; Mantovani G; Stolnik S
    J Mater Chem B; 2024 Jan; 12(4):1022-1030. PubMed ID: 38205916
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic structure of T4 gene 32 protein filaments facilitates rapid noncooperative protein dissociation.
    Cashen BA; Morse M; Rouzina I; Karpel RL; Williams MC
    Nucleic Acids Res; 2023 Sep; 51(16):8587-8605. PubMed ID: 37449435
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of the T4 gp32-ssDNA complex by native, cross-linking, and ultraviolet photodissociation mass spectrometry.
    Blevins MS; Walker JN; Schaub JM; Finkelstein IJ; Brodbelt JS
    Chem Sci; 2021 Oct; 12(41):13764-13776. PubMed ID: 34760161
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unlimited Cooperativity of
    Lechuga A; Kazlauskas D; Salas M; Redrejo-Rodríguez M
    Front Microbiol; 2021; 12():699140. PubMed ID: 34267740
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Essential, Ubiquitous Single-Stranded DNA-Binding Proteins.
    Oliveira MT; Ciesielski GL
    Methods Mol Biol; 2021; 2281():1-21. PubMed ID: 33847949
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparative study of protein-ssDNA interactions.
    Lin M; Malik FK; Guo JT
    NAR Genom Bioinform; 2021 Mar; 3(1):lqab006. PubMed ID: 33655206
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mapping DNA conformations and interactions within the binding cleft of bacteriophage T4 single-stranded DNA binding protein (gp32) at single nucleotide resolution.
    Camel BR; Jose D; Meze K; Dang A; von Hippel PH
    Nucleic Acids Res; 2021 Jan; 49(2):916-927. PubMed ID: 33367802
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of the C-domain of bacteriophage T4 gene 32 protein in ssDNA binding and dsDNA helix-destabilization: Kinetic, single-molecule, and cross-linking studies.
    Pant K; Anderson B; Perdana H; Malinowski MA; Win AT; Pabst C; Williams MC; Karpel RL
    PLoS One; 2018; 13(4):e0194357. PubMed ID: 29634784
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using microsecond single-molecule FRET to determine the assembly pathways of T4 ssDNA binding protein onto model DNA replication forks.
    Phelps C; Israels B; Jose D; Marsh MC; von Hippel PH; Marcus AH
    Proc Natl Acad Sci U S A; 2017 May; 114(18):E3612-E3621. PubMed ID: 28416680
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Binding dynamics of a monomeric SSB protein to DNA: a single-molecule multi-process approach.
    Morten MJ; Peregrina JR; Figueira-Gonzalez M; Ackermann K; Bode BE; White MF; Penedo JC
    Nucleic Acids Res; 2015 Dec; 43(22):10907-24. PubMed ID: 26578575
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mapping the interactions of the single-stranded DNA binding protein of bacteriophage T4 (gp32) with DNA lattices at single nucleotide resolution: gp32 monomer binding.
    Jose D; Weitzel SE; Baase WA; von Hippel PH
    Nucleic Acids Res; 2015 Oct; 43(19):9276-90. PubMed ID: 26275775
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of the bacteriophage T4 Dda helicase by Gp32 single-stranded DNA-binding protein.
    Jordan CS; Morrical SW
    DNA Repair (Amst); 2015 Jan; 25():41-53. PubMed ID: 25481875
    [TBL] [Abstract][Full Text] [Related]  

  • 14. C-terminal domain swapping of SSB changes the size of the ssDNA binding site.
    Huang YH; Huang CY
    Biomed Res Int; 2014; 2014():573936. PubMed ID: 25162017
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of a single-stranded DNA-binding protein from Pseudomonas aeruginosa PAO1.
    Jan HC; Lee YL; Huang CY
    Protein J; 2011 Jan; 30(1):20-6. PubMed ID: 21132356
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Complexed crystal structure of replication restart primosome protein PriB reveals a novel single-stranded DNA-binding mode.
    Huang CY; Hsu CH; Sun YJ; Wu HN; Hsiao CD
    Nucleic Acids Res; 2006; 34(14):3878-86. PubMed ID: 16899446
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bacteriophage T4 genome.
    Miller ES; Kutter E; Mosig G; Arisaka F; Kunisawa T; Rüger W
    Microbiol Mol Biol Rev; 2003 Mar; 67(1):86-156, table of contents. PubMed ID: 12626685
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Snapshot of the genome of the pseudo-T-even bacteriophage RB49.
    Desplats C; Dez C; Tétart F; Eleaume H; Krisch HM
    J Bacteriol; 2002 May; 184(10):2789-804. PubMed ID: 11976309
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sequence-specific 1H, 13C and 15N assignment of the single-stranded DNA binding protein of the bacteriophage phi 29.
    Pineda-Lucena A; Vuister GW; Hilbers CW
    J Biomol NMR; 1999 Mar; 13(3):303-4. PubMed ID: 10212988
    [No Abstract]   [Full Text] [Related]  

  • 20. Mutations of basic amino acids of NCp7 of human immunodeficiency virus type 1 affect RNA binding in vitro.
    Schmalzbauer E; Strack B; Dannull J; Guehmann S; Moelling K
    J Virol; 1996 Feb; 70(2):771-7. PubMed ID: 8551614
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.