These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 17362976)

  • 1. Formation of metallic Ni nanoparticles on titania surfaces by chemical vapor reductive deposition method.
    Yoshinaga M; Takahashi H; Yamamoto K; Muramatsu A; Morikawa T
    J Colloid Interface Sci; 2007 May; 309(1):149-54. PubMed ID: 17362976
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Atomic-scale study of in situ metal nanoparticle synthesis in a Ni/TiO2 system.
    Li P; Liu J; Nag N; Crozier PA
    J Phys Chem B; 2005 Jul; 109(29):13883-90. PubMed ID: 16852742
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aerosol assisted chemical vapor deposition using nanoparticle precursors: a route to nanocomposite thin films.
    Palgrave RG; Parkin IP
    J Am Chem Soc; 2006 Feb; 128(5):1587-97. PubMed ID: 16448130
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Catalyzed radical polymerization of styrene vapor on nanoparticle surfaces and the incorporation of metal and metal oxide nanoparticles within polystyrene polymers.
    Abdelsayed V; Alsharaeh E; El-Shall MS
    J Phys Chem B; 2006 Oct; 110(39):19100-3. PubMed ID: 17004754
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The immobilization of titania nanoparticles on hyaluronan films and their photocatalytic properties.
    Pasqui D; Atrei A; Barbucci R
    Nanotechnology; 2009 Jan; 20(1):015703. PubMed ID: 19417262
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metallic nanostructure formation limited by the surface hydrogen on silicon.
    Perrine KA; Teplyakov AV
    Langmuir; 2010 Aug; 26(15):12648-58. PubMed ID: 20608693
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of process parameters on the Liquid Flame Spray generated titania nanoparticles.
    Aromaa M; Keskinen H; Mäkelä JM
    Biomol Eng; 2007 Nov; 24(5):543-8. PubMed ID: 17950664
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Is it homogeneous or heterogeneous catalysis? Identification of bulk ruthenium metal as the true catalyst in benzene hydrogenations starting with the monometallic precursor, Ru(II)(eta 6-C6Me6)(OAc)2, plus kinetic characterization of the heterogeneous nucleation, then autocatalytic surface-growth mechanism of metal film formation.
    Widegren JA; Bennett MA; Finke RG
    J Am Chem Soc; 2003 Aug; 125(34):10301-10. PubMed ID: 12926954
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combinatorial approach to the study of particle size effects in electrocatalysis: synthesis of supported gold nanoparticles.
    Guerin S; Hayden BE; Pletcher D; Rendall ME; Suchsland JP; Williams LJ
    J Comb Chem; 2006; 8(5):791-8. PubMed ID: 16961416
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation and characterization of hollow carbon nanospheres supported metallic catalysts by using one-step pyrolysis method.
    Ding Y; Xia XH
    J Nanosci Nanotechnol; 2008 Mar; 8(3):1512-7. PubMed ID: 18468183
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation and stabilization of nifedipine lipid nanoparticles.
    Kamiya S; Yamada M; Kurita T; Miyagishima A; Arakawa M; Sonobe T
    Int J Pharm; 2008 Apr; 354(1-2):242-7. PubMed ID: 18082344
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tunable metallization by assembly of metal nanoparticles in polymer thin films by photo- or electron beam lithography.
    Yin D; Horiuchi S; Morita M; Takahara A
    Langmuir; 2005 Sep; 21(20):9352-8. PubMed ID: 16171373
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasma amino acid coatings for a conformal growth of titania nanoparticles.
    Anderson KD; Marczewski K; Singamaneni S; Slocik JM; Jakubiak R; Naik RR; Bunning TJ; Tsukruk VV
    ACS Appl Mater Interfaces; 2010 Aug; 2(8):2269-81. PubMed ID: 20735097
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A dual-deposition setup for fabricating nanoparticle-thin film hybrid structures.
    Kala S; Mehta BR; Kruis FE
    Rev Sci Instrum; 2008 Jan; 79(1):013902. PubMed ID: 18248045
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mono-layer of Ni(100-x)Fe(x) nanoparticles fabricated on a polyimide film under different curing atmospheres.
    Lim SK; Chun IS; Ban KS; Yoon CS; Kim CK; Kim YH
    J Colloid Interface Sci; 2006 Mar; 295(1):108-14. PubMed ID: 16112131
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneous synthesis and coating of salbutamol sulphate nanoparticles with L-leucine in the gas phase.
    Lähde A; Raula J; Kauppinen EI
    Int J Pharm; 2008 Jun; 358(1-2):256-62. PubMed ID: 18406087
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The influence of SWCNT-metallic nanoparticle mixtures on the desorption properties of milled MgH2 powders.
    Amirkhiz BS; Danaie M; Mitlin D
    Nanotechnology; 2009 May; 20(20):204016. PubMed ID: 19420664
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface structure and properties of biomedical NiTi shape memory alloy after Fenton's oxidation.
    Chu CL; Hu T; Wu SL; Dong YS; Yin LH; Pu YP; Lin PH; Chung CY; Yeung KW; Chu PK
    Acta Biomater; 2007 Sep; 3(5):795-806. PubMed ID: 17466609
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In situ chemical reductive growth of platinum nanoparticles on glass slide for the mass fabrication of biosensors.
    Yang MH; Qu FL; Lu YS; Shen GL; Yu RQ
    Talanta; 2008 Jan; 74(4):831-5. PubMed ID: 18371716
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Silver nanoparticle thin films with nanocavities for surface-enhanced Raman scattering.
    Kahraman M; Tokman N; Culha M
    Chemphyschem; 2008 Apr; 9(6):902-10. PubMed ID: 18366038
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.