These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 17363248)

  • 41. Response properties of visual interneurons to motion stimuli in the praying mantis, Tenodera aridifolia.
    Yamawaki Y; Toh Y
    Zoolog Sci; 2003 Jul; 20(7):819-32. PubMed ID: 12867710
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Local and global responses of insect motion detectors to the spatial structure of natural scenes.
    O'Carroll DC; Barnett PD; Nordström K
    J Vis; 2011 Dec; 11(14):20. PubMed ID: 22201615
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Visual motion sensitivity in descending neurons in the hoverfly.
    Nicholas S; Leibbrandt R; Nordström K
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2020 Mar; 206(2):149-163. PubMed ID: 31989217
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Motion adaptation and the velocity coding of natural scenes.
    Barnett PD; Nordström K; O'Carroll DC
    Curr Biol; 2010 Jun; 20(11):994-9. PubMed ID: 20537540
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Fast-scale adaptive changes of directional tuning in fly tangential cells are explained by a static nonlinearity.
    Neri P
    J Exp Biol; 2007 Sep; 210(Pt 18):3199-208. PubMed ID: 17766297
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Contrast sensitivity of insect motion detectors to natural images.
    Straw AD; Rainsford T; O'Carroll DC
    J Vis; 2008 Mar; 8(3):32.1-9. PubMed ID: 18484838
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Neural circuit tuning fly visual neurons to motion of small objects. II. Input organization of inhibitory circuit elements revealed by electrophysiological and optical recording techniques.
    Egelhaaf M; Borst A; Warzecha AK; Flecks S; Wildemann A
    J Neurophysiol; 1993 Feb; 69(2):340-51. PubMed ID: 8459271
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Dendritic structure and receptive-field organization of optic flow processing interneurons in the fly.
    Krapp HG; Hengstenberg B; Hengstenberg R
    J Neurophysiol; 1998 Apr; 79(4):1902-17. PubMed ID: 9535957
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Lobula-specific visual projection neurons are involved in perception of motion-defined second-order motion in Drosophila.
    Zhang X; Liu H; Lei Z; Wu Z; Guo A
    J Exp Biol; 2013 Feb; 216(Pt 3):524-34. PubMed ID: 23077158
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Integration of Small- and Wide-Field Visual Features in Target-Selective Descending Neurons of both Predatory and Nonpredatory Dipterans.
    Nicholas S; Supple J; Leibbrandt R; Gonzalez-Bellido PT; Nordström K
    J Neurosci; 2018 Dec; 38(50):10725-10733. PubMed ID: 30373766
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Octopaminergic modulation of contrast gain adaptation in fly visual motion-sensitive neurons.
    Rien D; Kern R; Kurtz R
    Eur J Neurosci; 2012 Oct; 36(8):3030-9. PubMed ID: 22775326
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Local and global motion preferences in descending neurons of the fly.
    Wertz A; Haag J; Borst A
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2009 Dec; 195(12):1107-20. PubMed ID: 19830435
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The relevance of neural architecture to visual performance: phylogenetic conservation and variation in Dipteran visual systems.
    Buschbeck EK; Strausfeld NJ
    J Comp Neurol; 1997 Jul; 383(3):282-304. PubMed ID: 9205042
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Spatial and temporal frequency selectivity of neurons in the middle temporal visual area of new world monkeys (Callithrix jacchus).
    Lui LL; Bourne JA; Rosa MG
    Eur J Neurosci; 2007 Mar; 25(6):1780-92. PubMed ID: 17432965
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Neural networks in the cockpit of the fly.
    Borst A; Haag J
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2002 Jul; 188(6):419-37. PubMed ID: 12122462
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Motion detectors in the locust visual system: From biology to robot sensors.
    Rind FC
    Microsc Res Tech; 2002 Feb; 56(4):256-69. PubMed ID: 11877801
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Neural specializations for small target detection in insects.
    Nordström K
    Curr Opin Neurobiol; 2012 Apr; 22(2):272-8. PubMed ID: 22244741
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Distribution of auditory motion-direction sensitive neurons in the barn owl's midbrain.
    Wagner H; von Campenhausen M
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2002 Oct; 188(9):705-13. PubMed ID: 12397441
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Visual system of the European hummingbird hawkmoth Macroglossum stellatarum (Sphingidae, Lepidoptera): motion-sensitive interneurons of the lobula plate.
    Wicklein M; Varjú D
    J Comp Neurol; 1999 May; 408(2):272-82. PubMed ID: 10333274
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Descending neurons of the hoverfly respond to pursuits of artificial targets.
    Ogawa Y; Nicholas S; Thyselius M; Leibbrandt R; Nowotny T; Knight JC; Nordström K
    Curr Biol; 2023 Oct; 33(20):4392-4404.e5. PubMed ID: 37776861
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.