These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 17364)
61. Energy conservation in Thiobacillus neapolitanus C6 sulphide and sulphite oxidation. Drozd JW J Gen Microbiol; 1977 Jan; 98(1):309-12. PubMed ID: 188974 [No Abstract] [Full Text] [Related]
62. Extension of logarithmic growth of Thiobacillus ferrooxidans by potential controlled electrochemical reduction of Fe(III). Matsumoto N; Nakasono S; Ohmura N; Saiki H Biotechnol Bioeng; 1999 Sep; 64(6):716-21. PubMed ID: 10417221 [TBL] [Abstract][Full Text] [Related]
63. Growth kinetics of Hyphomicrobium and Thiobacillus spp. in mixed cultures degrading dimethyl sulfide and methanol. Hayes AC; Liss SN; Allen DG Appl Environ Microbiol; 2010 Aug; 76(16):5423-31. PubMed ID: 20562269 [TBL] [Abstract][Full Text] [Related]
64. [Balance of macroergic compounds during the growth of Thiobacillus ferrooxidans]. Ivanov VN Mikrobiologiia; 1986; 55(5):768-74. PubMed ID: 3102905 [TBL] [Abstract][Full Text] [Related]
65. Energetic aspects of the metabolism of reduced sulphur compounds in Thiobacillus dentrificans. Hoor AT Antonie Van Leeuwenhoek; 1976; 42(4):483-92. PubMed ID: 1087862 [TBL] [Abstract][Full Text] [Related]
66. Thiobacillus ferrooxidans cytochrome c-552: purification and some of its molecular features. Sato A; Fukumori Y; Yano T; Kai M; Yamanaka T Biochim Biophys Acta; 1989 Sep; 976(2-3):129-34. PubMed ID: 2551385 [TBL] [Abstract][Full Text] [Related]
67. Effect of particle-particle shearing on the bioleaching of sulfide minerals. Chong N; Karamanev DG; Margaritis A Biotechnol Bioeng; 2002 Nov; 80(3):349-57. PubMed ID: 12226868 [TBL] [Abstract][Full Text] [Related]
68. Geomicrobiological leaching of tin minerals by Thiobacillus ferro-oxidans and organic agents. Teh GH; Schwartz W; Amstutz GC Z Allg Mikrobiol; 1981; 21(2):157-67. PubMed ID: 7269646 [TBL] [Abstract][Full Text] [Related]
69. [Study on the rejuvenating by isolation and the immobilization of Thiobacillus ferrooxidans]. Di J; Zhao X; Geng B Wei Sheng Wu Xue Bao; 2003 Aug; 43(4):487-91. PubMed ID: 16276924 [TBL] [Abstract][Full Text] [Related]
71. [Effect of Fe3+ ions on Thiobacillus ferrooxidans oxidation of ferrous oxide at various temperatures]. Kovalenko TV; Karavaĭko GI; Piskunov VP Mikrobiologiia; 1982; 51(1):156-60. PubMed ID: 7070305 [TBL] [Abstract][Full Text] [Related]
72. Energy coupling during sulphur compound oxidation by Thiobacillus sp. strain C. Kelly DP; Syrett PJ J Gen Microbiol; 1966 Apr; 43(1):109-18. PubMed ID: 5954374 [No Abstract] [Full Text] [Related]
73. [Aqueous oxidation of SO2 with microbial method]. Jiang WJ; Tong XS; Zhu XF; Zhu LX; Jin Y Huan Jing Ke Xue; 2006 May; 27(5):841-5. PubMed ID: 16850819 [TBL] [Abstract][Full Text] [Related]
74. Enzymic sulphide oxidation by thiobacillus concretivorus. Moriarty DJ; Nicholas DJ Biochim Biophys Acta; 1969 Jun; 184(1):114-23. PubMed ID: 5791102 [No Abstract] [Full Text] [Related]
75. Investigations into the kinetics and stoichiometry of bacterial oxidation of covellite (CuS) using a polarographic oxygen probe. Rickard PA; Vanselow DG Can J Microbiol; 1978 Aug; 24(8):998-1003. PubMed ID: 688107 [TBL] [Abstract][Full Text] [Related]
76. Sulphide oxidation linked to the reduction of nitrate and nitrite in Thiobacillus denitrificans. Aminuddin M; Nicholas DJ Biochim Biophys Acta; 1973 Oct; 325(1):81-93. PubMed ID: 4770733 [No Abstract] [Full Text] [Related]
77. Anaerobic, nitrate-dependent oxidation of pyrite nanoparticles by Thiobacillus denitrificans. Bosch J; Lee KY; Jordan G; Kim KW; Meckenstock RU Environ Sci Technol; 2012 Feb; 46(4):2095-101. PubMed ID: 22142180 [TBL] [Abstract][Full Text] [Related]
78. [The role of thionic bacteria in oxidation of sulphide ores of the Kafanskoe bed]. Karavaĭko GI Mikrobiologiia; 1966; 35(6):1004-11. PubMed ID: 6003003 [No Abstract] [Full Text] [Related]