These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 17364100)

  • 1. Contact mechanics of the ovine stifle during simulated early stance in gait. An in vitro study using robotics.
    Lee-Shee NK; Dickey JP; Hurtig MB
    Vet Comp Orthop Traumatol; 2007; 20(1):70-2. PubMed ID: 17364100
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comparison of passive flexion-extension to normal gait in the ovine stifle joint.
    Darcy SP; Rosvold JM; Beveridge JE; Corr DT; Brown JJ; Sutherland CA; Marchuk LL; Frank CB; Shrive NG
    J Biomech; 2008; 41(4):854-60. PubMed ID: 18093599
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The medial-lateral force distribution in the ovine stifle joint during walking.
    Taylor WR; Poepplau BM; König C; Ehrig RM; Zachow S; Duda GN; Heller MO
    J Orthop Res; 2011 Apr; 29(4):567-71. PubMed ID: 20957731
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reproduction of in vivo motion using a parallel robot.
    Howard RA; Rosvold JM; Darcy SP; Corr DT; Shrive NG; Tapper JE; Ronsky JL; Beveridge JE; Marchuk LL; Frank CB
    J Biomech Eng; 2007 Oct; 129(5):743-9. PubMed ID: 17887900
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic in vivo kinematics of the intact ovine stifle joint.
    Tapper JE; Fukushima S; Azuma H; Thornton GM; Ronsky JL; Shrive NG; Frank CB
    J Orthop Res; 2006 Apr; 24(4):782-92. PubMed ID: 16514638
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel testing platform for assessing knee joint mechanics: a parallel robotic system combined with an instrumented spatial linkage.
    Atarod M; Rosvold JM; Frank CB; Shrive NG
    Ann Biomed Eng; 2014 May; 42(5):1121-32. PubMed ID: 24519725
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Technical issues in using robots to reproduce joint specific gait.
    Rosvold JM; Darcy SP; Peterson RC; Achari Y; Corr DT; Marchuk LL; Frank CB; Shrive NG; Rosvold JM; Darcy SP; Peterson RC; Achari Y; Corr DT; Marchuk LL; Frank CB; Shrive NG
    J Biomech Eng; 2011 May; 133(5):054501. PubMed ID: 21599101
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tibio-femoral loading during human gait and stair climbing.
    Taylor WR; Heller MO; Bergmann G; Duda GN
    J Orthop Res; 2004 May; 22(3):625-32. PubMed ID: 15099644
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tibio-femoral joint contact forces in sheep.
    Taylor WR; Ehrig RM; Heller MO; Schell H; Seebeck P; Duda GN
    J Biomech; 2006; 39(5):791-8. PubMed ID: 16488218
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ground contact characteristics of Tai Chi gait.
    Wu G; Hitt J
    Gait Posture; 2005 Aug; 22(1):32-9. PubMed ID: 15996589
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Validation of an experimental testing apparatus simulating the stance phase of a canine pelvic limb at trot in the normal and the cranial cruciate-deficient stifle: an in vitro kinematic study.
    Hagemeister N; Lussier B; Jaafar E; Clément J; Petit Y
    Vet Surg; 2010 Apr; 39(3):390-7. PubMed ID: 20522219
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An ovine knee simulator: description and proof of concept.
    Bartolo MK; Newman S; Dandridge O; Halewood C; Accardi MA; Dini D; Amis AA
    Front Bioeng Biotechnol; 2024; 12():1410053. PubMed ID: 38994124
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gait simulation via a 6-DOF parallel robot with iterative learning control.
    Aubin PM; Cowley MS; Ledoux WR
    IEEE Trans Biomed Eng; 2008 Mar; 55(3):1237-40. PubMed ID: 18334421
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of the effects of diabetes on midfoot joint pressures using a robotic gait simulator.
    Lee DG; Davis BL
    Foot Ankle Int; 2009 Aug; 30(8):767-72. PubMed ID: 19735634
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of robotic technology in biomechanics to study joint laxity.
    Mangan B; Hurtig MB; Dickey JP
    J Med Eng Technol; 2010; 34(7-8):399-407. PubMed ID: 20701457
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Primary and secondary restraints of human and ovine knees for simulated in vivo gait kinematics.
    Nesbitt RJ; Herfat ST; Boguszewski DV; Engel AJ; Galloway MT; Shearn JT
    J Biomech; 2014 Jun; 47(9):2022-7. PubMed ID: 24326097
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative determination of joint incongruity and pressure distribution during simulated gait and cartilage thickness in the human hip joint.
    von Eisenhart R; Adam C; Steinlechner M; Müller-Gerbl M; Eckstein F
    J Orthop Res; 1999 Jul; 17(4):532-9. PubMed ID: 10459759
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Toe-out gait in patients with knee osteoarthritis partially transforms external knee adduction moment into flexion moment during early stance phase of gait: a tri-planar kinetic mechanism.
    Jenkyn TR; Hunt MA; Jones IC; Giffin JR; Birmingham TB
    J Biomech; 2008; 41(2):276-83. PubMed ID: 18061197
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tibiofemoral contact mechanics with a femoral resurfacing prosthesis and a non-functional meniscus.
    Becher C; Huber R; Thermann H; Tibesku CO; von Skrbensky G
    Clin Biomech (Bristol, Avon); 2009 Oct; 24(8):648-54. PubMed ID: 19560241
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new technique to measure the dynamic contact pressures on the Tibial Plateau.
    Cottrell JM; Scholten P; Wanich T; Warren RF; Wright TM; Maher SA
    J Biomech; 2008 Jul; 41(10):2324-9. PubMed ID: 18539286
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.