BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 17364467)

  • 1. Development of zero-link polymers of hemoglobin, which do not extravasate and do not induce pressure increases upon infusion.
    Bucci E; Kwansa H; Koehler RC; Matheson B
    Artif Cells Blood Substit Immobil Biotechnol; 2007; 35(1):11-8. PubMed ID: 17364467
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vascular response to infusions of a nonextravasating hemoglobin polymer.
    Matheson B; Kwansa HE; Bucci E; Rebel A; Koehler RC
    J Appl Physiol (1985); 2002 Oct; 93(4):1479-86. PubMed ID: 12235050
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Decreased damage from transient focal cerebral ischemia by transfusion of zero-link hemoglobin polymers in mouse.
    Mito T; Nemoto M; Kwansa H; Sampei K; Habeeb M; Murphy SJ; Bucci E; Koehler RC
    Stroke; 2009 Jan; 40(1):278-84. PubMed ID: 18988905
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polyhemoglobin with different percentage of tetrameric hemoglobin and effects on vasoactivity and electrocardiogram.
    Yu B; Liu Z; Chang TM
    Artif Cells Blood Substit Immobil Biotechnol; 2006; 34(2):159-73. PubMed ID: 16537172
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation, properties, and plasma retention of human hemoglobin derivatives: comparison of uncrosslinked carboxymethylated hemoglobin with crosslinked tetrameric hemoglobin.
    Manning LR; Morgan S; Beavis RC; Chait BT; Manning JM; Hess JR; Cross M; Currell DL; Marini MA; Winslow RM
    Proc Natl Acad Sci U S A; 1991 Apr; 88(8):3329-33. PubMed ID: 2014253
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The intravascular persistence of crosslinked human hemoglobin.
    Hess JR; Fadare SO; Tolentino LS; Bangal NR; Winslow RM
    Prog Clin Biol Res; 1989; 319():351-7; discussion 358-60. PubMed ID: 2622919
    [No Abstract]   [Full Text] [Related]  

  • 7. The ability of polyethylene glycol conjugated bovine hemoglobin (PEG-Hb) to adequately deliver oxygen in both exchange transfusion and top-loaded rat models.
    Conover CD; Linberg R; Shum KL; Shorr RG
    Artif Cells Blood Substit Immobil Biotechnol; 1999 Mar; 27(2):93-107. PubMed ID: 10092932
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Submicron biodegradable polymer membrane hemoglobin nanocapsules as potential blood substitutes: a preliminary report.
    Yu WP; Chang TM
    Artif Cells Blood Substit Immobil Biotechnol; 1994; 22(3):889-93. PubMed ID: 7994414
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxidized mono-, di-, tri-, and polysaccharides as potential hemoglobin cross-linking reagents for the synthesis of high oxygen affinity artificial blood substitutes.
    Eike JH; Palmer AF
    Biotechnol Prog; 2004; 20(3):953-62. PubMed ID: 15176904
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of the molecular mass of tense-state polymerized bovine hemoglobin on blood pressure and vasoconstriction.
    Cabrales P; Sun G; Zhou Y; Harris DR; Tsai AG; Intaglietta M; Palmer AF
    J Appl Physiol (1985); 2009 Nov; 107(5):1548-58. PubMed ID: 19745190
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An improved blood substitute. In vivo evaluation of its renal effects.
    Simoni J; Simoni G; Hartsell A; Feola M
    ASAIO J; 1997; 43(5):M714-25. PubMed ID: 9360140
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hemoglobin tetramers stabilized with polyaspirins.
    Bucci E; Fronticelli C; Razynska A; Militello V; Koehler R; Urbaitis B
    Biomater Artif Cells Immobilization Biotechnol; 1992; 20(2-4):243-52. PubMed ID: 1391438
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of polymerization on clearance and degradation of free hemoglobin.
    Bleeker WK; Berbers GA; den Boer PJ; Agterberg J; Rigter G; Bakker JC
    Biomater Artif Cells Immobilization Biotechnol; 1992; 20(2-4):747-50. PubMed ID: 1391506
    [TBL] [Abstract][Full Text] [Related]  

  • 14. S-nitrosylated polyethylene glycol-conjugated hemoglobin derivative as a candidate material for oxygen therapeutics.
    Nakai K; Sakuma I; Togashi H; Yoshioka M; Sugawara T; Satoh H; Kitabatake A
    Adv Exp Med Biol; 2003; 519():207-16. PubMed ID: 12675217
    [No Abstract]   [Full Text] [Related]  

  • 15. Modified hemoglobin solution as a resuscitation fluid.
    DeVenuto F
    Vox Sang; 1983 Mar; 44(3):129-42. PubMed ID: 6340353
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hemoglobin-based oxygen carriers: first, second or third generation? Human or bovine? Where are we now?
    Napolitano LM
    Crit Care Clin; 2009 Apr; 25(2):279-301, Table of Contents. PubMed ID: 19341909
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel dynamic heterogeneous phase polymerization reaction for poly-hemoglobin with narrow molecular weight distribution.
    Wang X; Huang L; Wang JF; Yang CM
    Artif Cells Blood Substit Immobil Biotechnol; 2008; 36(5):439-44. PubMed ID: 18821090
    [TBL] [Abstract][Full Text] [Related]  

  • 18. "Inside-Out" PEGylation of Bovine β-Cross-Linked Hemoglobin.
    Webster KD; Dahhan D; Otto AM; Frosti CL; Dean WL; Chaires JB; Olsen KW
    Artif Organs; 2017 Apr; 41(4):351-358. PubMed ID: 28321886
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Subunit-directed click coupling via doubly cross-linked hemoglobin efficiently produces readily purified functional bis-tetrameric oxygen carriers.
    Singh S; Dubinsky-Davidchik IS; Yang Y; Kluger R
    Org Biomol Chem; 2015 Dec; 13(45):11118-28. PubMed ID: 26400017
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of the polymerization step alone on oxygen affinity and cooperativity during production of hyperpolymers from native hemoglobins with crosslinkers.
    Barnikol WK
    Artif Cells Blood Substit Immobil Biotechnol; 1994; 22(3):725-31. PubMed ID: 7994394
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.