These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

472 related articles for article (PubMed ID: 17364471)

  • 1. Acellular invertebrate hemoglobins as model therapeutic oxygen carriers: unique redox potentials.
    Harrington JP; Kobayashi S; Dorman SC; Zito SL; Hirsch RE
    Artif Cells Blood Substit Immobil Biotechnol; 2007; 35(1):53-67. PubMed ID: 17364471
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural and redox behavior of OxyVita, a zero-linked polymeric hemoglobin: comparison with natural acellular polymeric hemoglobins.
    Harrington JP; Orlik K; Zito SL; Wollocko J; Wollocko H
    Artif Cells Blood Substit Immobil Biotechnol; 2010 Apr; 38(2):64-8. PubMed ID: 20196683
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Redox concerns in the use of acellular hemoglobin-based therapeutic oxygen carriers: the role of plasma components.
    Harrington JP; Gonzalez Y; Hirsch RE
    Artif Cells Blood Substit Immobil Biotechnol; 2000 Nov; 28(6):477-92. PubMed ID: 11063090
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control of oxidative reactions of hemoglobin in the design of blood substitutes: role of the ascorbate-glutathione antioxidant system.
    Simoni J; Villanueva-Meyer J; Simoni G; Moeller JF; Wesson DE
    Artif Organs; 2009 Feb; 33(2):115-26. PubMed ID: 19178455
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Artificial oxygen carriers, hemoglobin vesicles and albumin-hemes, based on bioconjugate chemistry.
    Tsuchida E; Sou K; Nakagawa A; Sakai H; Komatsu T; Kobayashi K
    Bioconjug Chem; 2009 Aug; 20(8):1419-40. PubMed ID: 19206516
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxygen therapeutics: can we tame haemoglobin?
    Alayash AI
    Nat Rev Drug Discov; 2004 Feb; 3(2):152-9. PubMed ID: 15043006
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of redox potential of hemoglobin-based oxygen carriers on methemoglobin reduction by plasma components.
    Dorman SC; Kenny CF; Miller L; Hirsch RE; Harrington JP
    Artif Cells Blood Substit Immobil Biotechnol; 2002 Jan; 30(1):39-51. PubMed ID: 12000225
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Numerical simulation of oxygen delivery to muscle tissue in the presence of hemoglobin-based oxygen carriers.
    Patton JN; Palmer AF
    Biotechnol Prog; 2006; 22(4):1025-49. PubMed ID: 16889379
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design of recombinant hemoglobins for use in transfusion fluids.
    Fronticelli C; Koehler RC
    Crit Care Clin; 2009 Apr; 25(2):357-71, Table of Contents. PubMed ID: 19341913
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermodynamic approach to oxygen delivery in vivo by natural and artificial oxygen carriers.
    Bucci E
    Biophys Chem; 2009 Jun; 142(1-3):1-6. PubMed ID: 19349106
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of hemoglobin concentration and affinity for oxygen on tissue oxygenation: the case of hemoglobin-based oxygen carriers.
    Samaja M; Terraneo L
    Artif Organs; 2012 Feb; 36(2):210-5. PubMed ID: 21848930
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prolonging the shelf life of Lumbricus terrestris erythrocruorin for use as a novel blood substitute.
    Muzzelo C; Neely C; Shah P; Abdulmalik O; Elmer J
    Artif Cells Nanomed Biotechnol; 2018 Feb; 46(1):39-46. PubMed ID: 28278582
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering tyrosine residues into hemoglobin enhances heme reduction, decreases oxidative stress and increases vascular retention of a hemoglobin based blood substitute.
    Cooper CE; Silkstone GGA; Simons M; Rajagopal B; Syrett N; Shaik T; Gretton S; Welbourn E; Bülow L; Eriksson NL; Ronda L; Mozzarelli A; Eke A; Mathe D; Reeder BJ
    Free Radic Biol Med; 2019 Apr; 134():106-118. PubMed ID: 30594736
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Arenicola marina extracellular hemoglobin: a new promising blood substitute.
    Rousselot M; Delpy E; Drieu La Rochelle C; Lagente V; Pirow R; Rees JF; Hagege A; Le Guen D; Hourdez S; Zal F
    Biotechnol J; 2006 Mar; 1(3):333-45. PubMed ID: 16897713
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Site-specific cross-linking of human and bovine hemoglobins differentially alters oxygen binding and redox side reactions producing rhombic heme and heme degradation.
    Nagababu E; Ramasamy S; Rifkind JM; Jia Y; Alayash AI
    Biochemistry; 2002 Jun; 41(23):7407-15. PubMed ID: 12044174
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A first evaluation of the natural high molecular weight polymeric Lumbricus terrestris hemoglobin as an oxygen carrier.
    Hirsch RE; Jelicks LA; Wittenberg BA; Kaul DK; Shear HL; Harrington JP
    Artif Cells Blood Substit Immobil Biotechnol; 1997 Sep; 25(5):429-44. PubMed ID: 9285044
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimizing the lyophilization of
    Dowd S; Sharo C; Abdulmalik O; Elmer J
    Artif Cells Nanomed Biotechnol; 2024 Dec; 52(1):291-299. PubMed ID: 38733371
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prolonged oxygen-carrying ability of hemoglobin vesicles by coencapsulation of catalase in vivo.
    Teramura Y; Kanazawa H; Sakai H; Takeoka S; Tsuchida E
    Bioconjug Chem; 2003; 14(6):1171-6. PubMed ID: 14624631
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of Cl- and H+ on the oxygen binding properties of glutaraldehyde-polymerized bovine hemoglobin-based blood substitutes.
    Eike JH; Palmer AF
    Biotechnol Prog; 2004; 20(5):1543-9. PubMed ID: 15458341
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intrinsic toxicity of hemoglobin: how to counteract it.
    Simoni J; Simoni G; Moeller JF
    Artif Organs; 2009 Feb; 33(2):100-9. PubMed ID: 19178453
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.