These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 17364475)

  • 101. Inverse expression of P(k) and Luke blood group antigens on human RBCs.
    Cooling LL; Kelly K
    Transfusion; 2001 Jul; 41(7):898-907. PubMed ID: 11452158
    [TBL] [Abstract][Full Text] [Related]  

  • 102. Decreased agglutinability of methoxy-polyethylene glycol attached red blood cells: significance as a blood substitute.
    Jeong ST; Byun SM
    Artif Cells Blood Substit Immobil Biotechnol; 1996 Sep; 24(5):503-11. PubMed ID: 8879424
    [TBL] [Abstract][Full Text] [Related]  

  • 103. Allogeneic adsorptions: a comparison of the traditional method with a modified PEG adsorption method.
    Etem ME; Laird-Fryer B; Holub MP; Hedl JJ; Symington DB; Figueroa D
    Immunohematology; 2010; 26(3):104-8. PubMed ID: 21214296
    [TBL] [Abstract][Full Text] [Related]  

  • 104. [Chemical structure of erythrocyte blood group antigens].
    Karhi K; Viitala J
    Duodecim; 1981; 97(18):1465-72. PubMed ID: 7327137
    [No Abstract]   [Full Text] [Related]  

  • 105. Beyond PEGylation.
    Whelan J
    Drug Discov Today; 2005 Mar; 10(5):301. PubMed ID: 15749275
    [No Abstract]   [Full Text] [Related]  

  • 106. Stealth erythrocytes--a possible transfusion product for the new century?
    Garratty G
    Vox Sang; 2000; 78 Suppl 2():143-7. PubMed ID: 10938944
    [No Abstract]   [Full Text] [Related]  

  • 107. Porcine red blood cells express a polyagglutinable red blood cell phenotype.
    Swanson JL; Cooling L
    Transfusion; 2005 Jun; 45(6):1035-6; author reply 1036-7. PubMed ID: 15935004
    [No Abstract]   [Full Text] [Related]  

  • 108. Selective Attachment of Polyethylene Glycol to Hemerythrin for Potential Use in Blood Substitutes.
    Arkosi MK; Mot AC; Lupan I; Tegla MGG; Silaghi-Dumitrescu R
    Protein J; 2023 Aug; 42(4):374-382. PubMed ID: 37119381
    [TBL] [Abstract][Full Text] [Related]  

  • 109. Posttransfusion red blood cell (RBC) survival determined using biotin-labeled RBCs has distinct advantages over labeling with (51) Cr.
    Mock DM; Widness JA; Strauss RG; Franco RS
    Transfusion; 2012 Jul; 52(7):1596-8. PubMed ID: 22780899
    [No Abstract]   [Full Text] [Related]  

  • 110. Opening keynote lecture (OKL). 50th anniversary of artificial cells: evolving to oxygen carriers, oxygen therapeutics, nano artificial RBC and a novel oxygen carrier with platelet-like function.
    Chang TM
    Artif Cells Blood Substit Immobil Biotechnol; 2008; 36(3):181-4. PubMed ID: 18568613
    [No Abstract]   [Full Text] [Related]  

  • 111. [Relation between blood groups and free amino acid content of the erythrocyte. Chromatographic study with ethanolic extraction].
    NIUTTA R; GIUFFRIDA G; D'ANGELO A
    Haematologica; 1960; 45():781-8. PubMed ID: 13729311
    [No Abstract]   [Full Text] [Related]  

  • 112. Ligand affinity: multivalency counterbalances PEGylation.
    Park K
    J Control Release; 2014 Nov; 194():351. PubMed ID: 25443093
    [No Abstract]   [Full Text] [Related]  

  • 113. International Society of Blood Transfusion Committee on Terminology for Red Cell Surface Antigens: Cape Town report.
    Daniels G; Flegel WA; Fletcher A; Garratty G; Levene C; Lomas-Francis C; Moulds JM; Moulds JJ; Olsson ML; Overbeeke MA; Poole J; Reid ME; Rouger P; van der Schoot CE; Scott M; Sistonen P; Smart E; Storry JR; Tani Y; Yu LC; Wendel S; Westhoff CM; Zelinski T
    Vox Sang; 2007 Apr; 92(3):250-3. PubMed ID: 17348875
    [No Abstract]   [Full Text] [Related]  

  • 114. [On isolation of blood group-specific antigens from the stroma of bovine erythrocytes].
    SCHMID DO
    Z Immun exp ther; 1961 May; 121():211-6. PubMed ID: 13747890
    [No Abstract]   [Full Text] [Related]  

  • 115. Red blood cells in biology and translational medicine: natural vehicle inspires new biomedical applications.
    Zhang X; Lin Y; Xin J; Zhang Y; Yang K; Luo Y; Wang B
    Theranostics; 2024; 14(1):220-248. PubMed ID: 38164142
    [TBL] [Abstract][Full Text] [Related]  

  • 116. Nucleic Acid Delivery with Red-Blood-Cell-Based Carriers.
    Della Pelle G; Kostevšek N
    Int J Mol Sci; 2021 May; 22(10):. PubMed ID: 34067699
    [TBL] [Abstract][Full Text] [Related]  

  • 117. Drug delivery by red blood cells: vascular carriers designed by mother nature.
    Muzykantov VR
    Expert Opin Drug Deliv; 2010 Apr; 7(4):403-27. PubMed ID: 20192900
    [TBL] [Abstract][Full Text] [Related]  

  • 118. Site-selective glycosylation of hemoglobin on Cys beta93.
    Zhang Y; Bhatt VS; Sun G; Wang PG; Palmer AF
    Bioconjug Chem; 2008 Nov; 19(11):2221-30. PubMed ID: 18925771
    [TBL] [Abstract][Full Text] [Related]  

  • 119. Thiolation mediated pegylation platform to generate functional universal red blood cells.
    Nacharaju P; Manjula BN; Acharya SA
    Artif Cells Blood Substit Immobil Biotechnol; 2007; 35(1):107-18. PubMed ID: 17364475
    [TBL] [Abstract][Full Text] [Related]  

  • 120. Surface decoration of red blood cells with maleimidophenyl-polyethylene glycol facilitated by thiolation with iminothiolane: an approach to mask A, B, and D antigens to generate universal red blood cells.
    Nacharaju P; Boctor FN; Manjula BN; Acharya SA
    Transfusion; 2005 Mar; 45(3):374-83. PubMed ID: 15752155
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.