These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 17364478)

  • 1. Synthetic oxygen carriers in cardiac tissue engineering.
    Iyer RK; Radisic M; Cannizzaro C; Vunjak-Novakovic G
    Artif Cells Blood Substit Immobil Biotechnol; 2007; 35(1):135-48. PubMed ID: 17364478
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomimetic approach to cardiac tissue engineering: oxygen carriers and channeled scaffolds.
    Radisic M; Park H; Chen F; Salazar-Lazzaro JE; Wang Y; Dennis R; Langer R; Freed LE; Vunjak-Novakovic G
    Tissue Eng; 2006 Aug; 12(8):2077-91. PubMed ID: 16968150
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomimetic approach to cardiac tissue engineering.
    Radisic M; Park H; Gerecht S; Cannizzaro C; Langer R; Vunjak-Novakovic G
    Philos Trans R Soc Lond B Biol Sci; 2007 Aug; 362(1484):1357-68. PubMed ID: 17594967
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Acellular cardiac extracellular matrix as a scaffold for tissue engineering: in vitro cell support, remodeling, and biocompatibility.
    Eitan Y; Sarig U; Dahan N; Machluf M
    Tissue Eng Part C Methods; 2010 Aug; 16(4):671-83. PubMed ID: 19780649
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mathematical model of oxygen distribution in engineered cardiac tissue with parallel channel array perfused with culture medium containing oxygen carriers.
    Radisic M; Deen W; Langer R; Vunjak-Novakovic G
    Am J Physiol Heart Circ Physiol; 2005 Mar; 288(3):H1278-89. PubMed ID: 15539422
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biophysical regulation during cardiac development and application to tissue engineering.
    Gerecht-Nir S; Radisic M; Park H; Cannizzaro C; Boublik J; Langer R; Vunjak-Novakovic G
    Int J Dev Biol; 2006; 50(2-3):233-43. PubMed ID: 16479491
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of oxygen on engineered cardiac muscle.
    Carrier RL; Rupnick M; Langer R; Schoen FJ; Freed LE; Vunjak-Novakovic G
    Biotechnol Bioeng; 2002 Jun; 78(6):617-25. PubMed ID: 11992527
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pulsatile perfusion bioreactor for cardiac tissue engineering.
    Brown MA; Iyer RK; Radisic M
    Biotechnol Prog; 2008; 24(4):907-20. PubMed ID: 19194900
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of perfluorocarbon-based artificial oxygen carriers on tissue-engineered trachea.
    Tan Q; El-Badry AM; Contaldo C; Steiner R; Hillinger S; Welti M; Hilbe M; Spahn DR; Jaussi R; Higuera G; van Blitterswijk CA; Luo Q; Weder W
    Tissue Eng Part A; 2009 Sep; 15(9):2471-80. PubMed ID: 19292679
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cardiac tissue engineering using perfusion bioreactor systems.
    Radisic M; Marsano A; Maidhof R; Wang Y; Vunjak-Novakovic G
    Nat Protoc; 2008; 3(4):719-38. PubMed ID: 18388955
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of oxygen transport in a diffusion-limited model of engineered heart tissue.
    Brown DA; MacLellan WR; Laks H; Dunn JC; Wu BM; Beygui RE
    Biotechnol Bioeng; 2007 Jul; 97(4):962-75. PubMed ID: 17195988
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vascularisation to improve translational potential of tissue engineering systems for cardiac repair.
    Dilley RJ; Morrison WA
    Int J Biochem Cell Biol; 2014 Nov; 56():38-46. PubMed ID: 25449260
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Perfusion improves tissue architecture of engineered cardiac muscle.
    Carrier RL; Rupnick M; Langer R; Schoen FJ; Freed LE; Vunjak-Novakovic G
    Tissue Eng; 2002 Apr; 8(2):175-88. PubMed ID: 12031108
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of cyclic stretch on maturation and 3D tissue formation of human embryonic stem cell-derived cardiomyocytes.
    Mihic A; Li J; Miyagi Y; Gagliardi M; Li SH; Zu J; Weisel RD; Keller G; Li RK
    Biomaterials; 2014 Mar; 35(9):2798-808. PubMed ID: 24424206
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D cardiac microtissues encapsulated with the co-culture of cardiomyocytes and cardiac fibroblasts.
    Saini H; Navaei A; Van Putten A; Nikkhah M
    Adv Healthc Mater; 2015 Sep; 4(13):1961-71. PubMed ID: 26129820
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Perfluorocarbon-based oxygen carriers: review of products and trials.
    Castro CI; Briceno JC
    Artif Organs; 2010 Aug; 34(8):622-34. PubMed ID: 20698841
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomaterial based cardiac tissue engineering and its applications.
    Huyer LD; Montgomery M; Zhao Y; Xiao Y; Conant G; Korolj A; Radisic M
    Biomed Mater; 2015 May; 10(3):034004. PubMed ID: 25989939
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fiber alignment and coculture with fibroblasts improves the differentiated phenotype of murine embryonic stem cell-derived cardiomyocytes for cardiac tissue engineering.
    Parrag IC; Zandstra PW; Woodhouse KA
    Biotechnol Bioeng; 2012 Mar; 109(3):813-22. PubMed ID: 22006660
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulation of the effects of oxygen carriers and scaffold geometry on oxygen distribution and cell growth in a channeled scaffold for engineering myocardium.
    Mofrad AZ; Mashayekhan S; Bastani D
    Math Biosci; 2017 Dec; 294():160-171. PubMed ID: 28919576
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hepatocyte function in a radial-flow bioreactor using a perfluorocarbon oxygen carrier.
    Nieuwoudt MJ; Moolman SF; Van Wyk KJ; Kreft E; Olivier B; Laurens JB; Stegman FG; Vosloo J; Bond R; van der Merwe SW
    Artif Organs; 2005 Nov; 29(11):915-8. PubMed ID: 16266307
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.