These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 17365029)
1. A PBPK modeling assessment of the competitive metabolic interactions of JP-8 vapor with two constituents, m-xylene and ethylbenzene. Campbell JL; Fisher JW Inhal Toxicol; 2007 Mar; 19(3):265-73. PubMed ID: 17365029 [TBL] [Abstract][Full Text] [Related]
2. Physiologically based pharmacokinetic modeling of a ternary mixture of alkyl benzenes in rats and humans. Tardif R; Charest-Tardif G; Brodeur J; Krishnan K Toxicol Appl Pharmacol; 1997 May; 144(1):120-34. PubMed ID: 9169076 [TBL] [Abstract][Full Text] [Related]
3. Biological and health effects of exposure to kerosene-based jet fuels and performance additives. Ritchie G; Still K; Rossi J; Bekkedal M; Bobb A; Arfsten D J Toxicol Environ Health B Crit Rev; 2003; 6(4):357-451. PubMed ID: 12775519 [TBL] [Abstract][Full Text] [Related]
4. Development of a physiologically based pharmacokinetic model for inhalation of jet fuels in the rat. Martin SA; Campbell JL; Tremblay RT; Fisher JW Inhal Toxicol; 2012 Jan; 24(1):1-26. PubMed ID: 22188408 [TBL] [Abstract][Full Text] [Related]
5. Validation of a gas chromatography/mass spectrometry method for the quantification of aerosolized Jet Propellant 8. Dietzel KD; Campbell JL; Bartlett MG; Witten ML; Fisher JW J Chromatogr A; 2005 Nov; 1093(1-2):11-20. PubMed ID: 16233866 [TBL] [Abstract][Full Text] [Related]
6. Human inhalation exposures to toluene, ethylbenzene, and m-xylene and physiologically based pharmacokinetic modeling of exposure biomarkers in exhaled air, blood, and urine. Marchand A; Aranda-Rodriguez R; Tardif R; Nong A; Haddad S Toxicol Sci; 2015 Apr; 144(2):414-24. PubMed ID: 25601989 [TBL] [Abstract][Full Text] [Related]
7. Characterization of the pharmacokinetics of gasoline using PBPK modeling with a complex mixtures chemical lumping approach. Dennison JE; Andersen ME; Yang RS Inhal Toxicol; 2003 Sep; 15(10):961-86. PubMed ID: 12928975 [TBL] [Abstract][Full Text] [Related]
8. Characterization of a nose-only inhalation exposure system for hydrocarbon mixtures and jet fuels. Martin SA; Tremblay RT; Brunson KF; Kendrick C; Fisher JW Inhal Toxicol; 2010 Apr; 22(5):382-93. PubMed ID: 20109056 [TBL] [Abstract][Full Text] [Related]
9. Assessment of skin absorption and penetration of JP-8 jet fuel and its components. McDougal JN; Pollard DL; Weisman W; Garrett CM; Miller TE Toxicol Sci; 2000 Jun; 55(2):247-55. PubMed ID: 10828255 [TBL] [Abstract][Full Text] [Related]
11. Development of a physiologically based pharmacokinetic model for volatile fractions of gasoline using chemical lumping analysis. Dennison JE; Andersen ME; Clewell HJ; Yang RS Environ Sci Technol; 2004 Nov; 38(21):5674-81. PubMed ID: 15575287 [TBL] [Abstract][Full Text] [Related]
12. Comparative in vivo toxicity of topical JP-8 jet fuel and its individual hydrocarbon components: identification of tridecane and tetradecane as key constituents responsible for dermal irritation. Muhammad F; Monteiro-Riviere NA; Riviere JE Toxicol Pathol; 2005; 33(2):258-66. PubMed ID: 15902969 [TBL] [Abstract][Full Text] [Related]
13. Toxicity and occupational exposure assessment for Fischer-Tropsch synthetic paraffinic kerosene. Mattie DR; Sterner TR; Reddy G; Steup DR; Zeiger E; Wagner DJ; Kurtz K; Daughtrey WC; Wong BA; Dodd DE; Edwards JT; Hinz JP J Toxicol Environ Health A; 2018; 81(16):774-791. PubMed ID: 29985787 [TBL] [Abstract][Full Text] [Related]
14. Methods for the characterization of Jet Propellent-8: vapor and aerosol. Gregg SD; Campbell JL; Fisher JW; Bartlett MG Biomed Chromatogr; 2007 May; 21(5):463-72. PubMed ID: 17345570 [TBL] [Abstract][Full Text] [Related]
15. Physiologically based modeling of the maximal effect of metabolic interactions on the kinetics of components of complex chemical mixtures. Haddad S; Charest-Tardif G; Krishnan K J Toxicol Environ Health A; 2000 Oct; 61(3):209-23. PubMed ID: 11036509 [TBL] [Abstract][Full Text] [Related]
16. Effects of repeated exposure to JP-8 jet fuel vapor on learning of simple and difficult operant tasks by rats. Ritchie GD; Rossi J; Nordholm AF; Still KR; Carpenter RL; Wenger GR; Wright DW J Toxicol Environ Health A; 2001 Nov; 64(5):385-415. PubMed ID: 11700005 [TBL] [Abstract][Full Text] [Related]
17. Characterization of inhalation exposure to jet fuel among U.S. Air Force personnel. Merchant-Borna K; Rodrigues EG; Smith KW; Proctor SP; McClean MD Ann Occup Hyg; 2012 Jul; 56(6):736-45. PubMed ID: 22433121 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of potential toxicity from co-exposure to three CNS depressants (toluene, ethylbenzene, and xylene) under resting and working conditions using PBPK modeling. Dennison JE; Bigelow PL; Mumtaz MM; Andersen ME; Dobrev ID; Yang RS J Occup Environ Hyg; 2005 Mar; 2(3):127-35. PubMed ID: 15764536 [TBL] [Abstract][Full Text] [Related]
19. Comparative electrophysiological evaluation of hippocampal function following repeated inhalation exposures to JP-8, Jet A, JP-5, and the synthetic Fischer Tropsch fuel. Rohan JG; McInturf SM; Miklasevich MK; Gut CP; Grimm MD; Reboulet JE; Howard WR; Mumy KL J Toxicol Environ Health A; 2018; 81(10):314-332. PubMed ID: 29498600 [TBL] [Abstract][Full Text] [Related]
20. Analysis of rat testicular protein expression following 91-day exposure to JP-8 jet fuel vapor. Witzmann FA; Bobb A; Briggs GB; Coppage HN; Hess RA; Li J; Pedrick NM; Ritchie GD; Rossi J; Still KR Proteomics; 2003 Jun; 3(6):1016-27. PubMed ID: 12833526 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]