These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 17365297)

  • 1. Mass transport in groundwater near hanging-wall interceptors.
    Hudak PF
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2007 Feb; 42(3):317-21. PubMed ID: 17365297
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Viability of longitudinal trenches for capturing contaminated groundwater.
    Hudak PF
    Bull Environ Contam Toxicol; 2010 Apr; 84(4):418-21. PubMed ID: 20237910
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Remediating Contaminant Plumes in Groundwater with Shallow Excavations Containing Coarse Reactive Media.
    Hudak PF
    Environ Manage; 2018 Feb; 61(2):304-309. PubMed ID: 29282532
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of reactive well networks for remediating heterogeneous aquifers.
    Hudak PF
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2008 Jun; 43(7):731-7. PubMed ID: 18444075
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of setback distance on ability of gravel trenches to intercept contaminated groundwater.
    Hudak PF
    Environ Monit Assess; 2005 May; 104(1-3):419-23. PubMed ID: 15932000
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contamination Transport in the Coastal Unconfined Aquifer under the Influences of Seawater Intrusion and Inland Freshwater Recharge-Laboratory Experiments and Numerical Simulations.
    Guo Q; Zhao Y; Hu Z; Li M
    Int J Environ Res Public Health; 2021 Jan; 18(2):. PubMed ID: 33477433
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Performance comparison of interceptor trench configurations for extracting contaminated groundwater.
    Hudak PF
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2004; 39(5):1295-300. PubMed ID: 15137698
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A PCE groundwater plume discharging to a river: influence of the streambed and near-river zone on contaminant distributions.
    Conant B; Cherry JA; Gillham RW
    J Contam Hydrol; 2004 Sep; 73(1-4):249-79. PubMed ID: 15336797
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Groundwater contamination downstream of a contaminant penetration site. II. Horizontal penetration of the contaminant plume.
    Rubin H; Buddemeier RW
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2002 Nov; 37(10):1813-39. PubMed ID: 12413211
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical assessments of recharge-dominated groundwater flow and transport in the nearshore reclamation area in western Taiwan.
    Ni CF; Li WC; Hsu SM; Lee IH; Lin CP
    Environ Monit Assess; 2019 Jan; 191(2):83. PubMed ID: 30659403
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Viability of interceptor trenches for monitoring groundwater quality near landfills.
    Hudak PF
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2003 Apr; 38(4):711-7. PubMed ID: 12716075
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A simple contaminant fate and transport modelling tool for management and risk assessment of groundwater pollution from contaminated sites.
    Locatelli L; Binning PJ; Sanchez-Vila X; Søndergaard GL; Rosenberg L; Bjerg PL
    J Contam Hydrol; 2019 Feb; 221():35-49. PubMed ID: 30638639
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Numerical experiments and field results on the size of steady state plumes.
    Maier U; Grathwohl P
    J Contam Hydrol; 2006 May; 85(1-2):33-52. PubMed ID: 16500721
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly parameterized inversion of groundwater reactive transport for a complex field site.
    Carniato L; Schoups G; van de Giesen N; Seuntjens P; Bastiaens L; Sapion H
    J Contam Hydrol; 2015 Feb; 173():38-58. PubMed ID: 25528244
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Establishing a geochemical heterogeneity model for a contaminated vadose zone--aquifer system.
    Murray CJ; Zachara JM; McKinley JP; Ward A; Bott YJ; Draper K; Moore D
    J Contam Hydrol; 2013 Oct; 153():122-40. PubMed ID: 23664489
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of multi-gate interceptors equipped with baffles in contaminated aquifers.
    Hudak PF
    Bull Environ Contam Toxicol; 2011 Jul; 87(1):96-100. PubMed ID: 21553031
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling of strategies for performance monitoring of groundwater contamination at sites underlain by fractured bedrock.
    Chen Y; Smith L; Beckie R
    J Contam Hydrol; 2012 Jun; 134-135():37-53. PubMed ID: 22579666
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relative efficiency of multi-transect, non-pumped, reactive well networks for removing contaminated groundwater.
    Hudak PF
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2012; 47(13):2159-62. PubMed ID: 22871014
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Persistence of uranium groundwater plumes: contrasting mechanisms at two DOE sites in the groundwater-river interaction zone.
    Zachara JM; Long PE; Bargar J; Davis JA; Fox P; Fredrickson JK; Freshley MD; Konopka AE; Liu C; McKinley JP; Rockhold ML; Williams KH; Yabusaki SB
    J Contam Hydrol; 2013 Apr; 147():45-72. PubMed ID: 23500840
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contaminant plume classification system based on mass discharge.
    Newell CJ; Farhat SK; Adamson DT; Looney BB
    Ground Water; 2011; 49(6):914-9. PubMed ID: 21306359
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.