These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 17365303)

  • 1. Characteristics of a twice-fed sequencing batch reactor treating swine wastewater under control of aeration intensity.
    Han Z; Wu W; Chen Y; Zhu J
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2007 Feb; 42(3):361-70. PubMed ID: 17365303
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Achieving the nitrite pathway using aeration phase length control and step-feed in an SBR removing nutrients from abattoir wastewater.
    Lemaire R; Marcelino M; Yuan Z
    Biotechnol Bioeng; 2008 Aug; 100(6):1228-36. PubMed ID: 18553405
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of feed characteristics on the organic matter, nitrogen and phosphorus removal in an activated sludge system treating piggery slurry.
    González C; García PA; Muñoz R
    Water Sci Technol; 2009; 60(8):2145-52. PubMed ID: 19844061
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of feeding strategy on the performance of sequencing batch reactor with dual anoxic feedings for swine wastewater treatment.
    Han Z; Zhu J; Ding Y; Wu W; Chen Y; Zhang R
    Water Environ Res; 2011 Jul; 83(7):643-9. PubMed ID: 21790083
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A reformed SBR technology integrated with two-step feeding and low-intensity aeration for swine wastewater treatment.
    Lu L; Zhang S; Li H; Wang Z; Li J; Zhang Z; Zhu J
    Environ Technol; 2009 Mar; 30(3):251-60. PubMed ID: 19438057
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Denitrifying phosphorus-accumulating SBR combined with low-intensity aeration technology for piggery wastewater treatment].
    Lü L; Wang ZD; Zhang S; Zhang ZJ
    Huan Jing Ke Xue; 2008 Jul; 29(7):1884-9. PubMed ID: 18828371
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Temperature effects on DO and ORP in the wastewater treatment].
    Gao D; Wang S; Peng Y; Liang H
    Huan Jing Ke Xue; 2003 Jan; 24(1):63-9. PubMed ID: 12708291
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of reject water treatment with nitrification/denitrification via nitrite in SBR and SHARON chemostat process.
    Galí A; Dosta J; Macé S; Mata-Alvarez J
    Environ Technol; 2007 Feb; 28(2):173-6. PubMed ID: 17396411
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Feeding schemes and C/N ratio of a laboratory-scale step-fed sequencing batch reactor for liquid swine manure treatment.
    Wu SX; Zhu J; Chen L
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2017 Jul; 52(8):718-726. PubMed ID: 28358299
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nitrogen removal from piggery waste using the combined SHARON and ANAMMOX process.
    Hwang IS; Min KS; Choi E; Yun Z
    Water Sci Technol; 2005; 52(10-11):487-94. PubMed ID: 16459825
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nutrient removal from slaughterhouse wastewater in an intermittently aerated sequencing batch reactor.
    Li JP; Healy MG; Zhan XM; Rodgers M
    Bioresour Technol; 2008 Nov; 99(16):7644-50. PubMed ID: 18359223
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simultaneous nitrification, denitrification, and phosphorus removal in a lab-scale sequencing batch reactor.
    Zeng RJ; Lemaire R; Yuan Z; Keller J
    Biotechnol Bioeng; 2003 Oct; 84(2):170-8. PubMed ID: 12966573
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Autotrophic nitrogen removal in sequencing batch biofilm reactors at different oxygen supply modes.
    Wantawin C; Juateea J; Noophan PL; Munakata-Marr J
    Water Sci Technol; 2008; 58(10):1889-94. PubMed ID: 19039166
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Performance of intermittently aerated up-flow sludge bed reactor and sequencing batch reactor treating industrial estate wastewater: a comparative study.
    Asadi A; Zinatizadeh AA; Hasnain Isa M
    Bioresour Technol; 2012 Nov; 123():495-506. PubMed ID: 22940360
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nitrogen and sulfide removal from effluent of UASB reactor in a sequencing fed-batch biofilm reactor under intermittent aeration.
    Moraes BS; Orrú JG; Foresti E
    J Biotechnol; 2013 Apr; 164(3):378-85. PubMed ID: 22789473
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Feasibility of nitrification/denitrification in a sequencing batch biofilm reactor with liquid circulation applied to post-treatment.
    Andrade do Canto CS; Rodrigues JA; Ratusznei SM; Zaiat M; Foresti E
    Bioresour Technol; 2008 Feb; 99(3):644-54. PubMed ID: 17336516
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identifying an interfering factor on chemical oxygen demand (COD) determination in piggery wastewater and eliminating the factor by an indigenous Pseudomonas stutzeri strain.
    Su JJ; Liu BY; Chang YC
    Lett Appl Microbiol; 2001 Dec; 33(6):440-4. PubMed ID: 11737628
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of partial nitrification to nitrite for ammonium-rich organic wastewater in sequencing batch reactors and continuous stirred-tank reactor at laboratory-scale.
    Yan J; Hu YY
    Water Sci Technol; 2009; 60(11):2861-8. PubMed ID: 19934507
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Using oxidation-reduction potential (ORP) and pH value for process control of shortcut nitrification-denitrification.
    Gao DW; Peng YZ; Liang H; Wang P
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2003; 38(12):2933-42. PubMed ID: 14672326
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Shortcut nitrification-denitrification in a sequencing batch reactor by controlling aeration duration based on hydrogen ion production rate online monitoring.
    Zhang X; Zhang D; He Q; Ai H; Lu P
    Environ Technol; 2014; 35(9-12):1478-83. PubMed ID: 24701946
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.