BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 1736532)

  • 1. Substantial portions of the 5' and intercistronic noncoding regions of cowpea chlorotic mottle virus RNA3 are dispensable for systemic infection but influence viral competitiveness and infection pathology.
    Pacha RF; Ahlquist P
    Virology; 1992 Mar; 187(1):298-307. PubMed ID: 1736532
    [TBL] [Abstract][Full Text] [Related]  

  • 2. cis-acting sequences required for in vivo amplification of genomic RNA3 are organized differently in related bromoviruses.
    Pacha RF; Allison RF; Ahlquist P
    Virology; 1990 Feb; 174(2):436-43. PubMed ID: 2305551
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sequence of cowpea chlorotic mottle virus RNAs 2 and 3 and evidence of a recombination event during bromovirus evolution.
    Allison RF; Janda M; Ahlquist P
    Virology; 1989 Sep; 172(1):321-30. PubMed ID: 2773323
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regeneration of a functional RNA virus genome by recombination between deletion mutants and requirement for cowpea chlorotic mottle virus 3a and coat genes for systemic infection.
    Allison R; Thompson C; Ahlquist P
    Proc Natl Acad Sci U S A; 1990 Mar; 87(5):1820-4. PubMed ID: 2308940
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Infectious in vitro transcripts from cowpea chlorotic mottle virus cDNA clones and exchange of individual RNA components with brome mosaic virus.
    Allison RF; Janda M; Ahlquist P
    J Virol; 1988 Oct; 62(10):3581-8. PubMed ID: 3418781
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bromovirus movement protein genes play a crucial role in host specificity.
    Mise K; Allison RF; Janda M; Ahlquist P
    J Virol; 1993 May; 67(5):2815-23. PubMed ID: 7682628
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The nucleotide sequence and genome organization of the RNA2 and RNA3 segments in broad bean mottle virus.
    Romero J; Dzianott AM; Bujarski JJ
    Virology; 1992 Apr; 187(2):671-81. PubMed ID: 1546462
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of bromovirus RNA3 hybrids to study template specificity in viral RNA amplification.
    Pacha RF; Ahlquist P
    J Virol; 1991 Jul; 65(7):3693-703. PubMed ID: 2041089
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A single codon change in a conserved motif of a bromovirus movement protein gene confers compatibility with a new host.
    Fujita Y; Mise K; Okuno T; Ahlquist P; Furusawa I
    Virology; 1996 Sep; 223(2):283-91. PubMed ID: 8806564
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Complete nucleotide sequence of spring beauty latent virus, a bromovirus infectious to Arabidopsis thaliana.
    Fujisaki K; Hagihara F; Kaido M; Mise K; Okuno T
    Arch Virol; 2003 Jan; 148(1):165-75. PubMed ID: 12536302
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of bromovirus RNA2 hybrids to map cis- and trans-acting functions in a conserved RNA replication gene.
    Traynor P; Ahlquist P
    J Virol; 1990 Jan; 64(1):69-77. PubMed ID: 2293671
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Small-Scale Isolation of Viral RNA-Dependent RNA Polymerase from Protoplasts Inoculated with In Vitro Transcripts.
    Adkins S; Lewandowski DJ
    Phytopathology; 2001 Aug; 91(8):747-52. PubMed ID: 18944031
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mutational analysis of cis-acting sequences and gene function in RNA3 of cucumber mosaic virus.
    Boccard F; Baulcombe D
    Virology; 1993 Apr; 193(2):563-78. PubMed ID: 8460476
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interstrain pseudorecombinants of cowpea chlorotic mottle virus: effects on systemic spread and symptom formation in soybean and cowpea.
    Shang H; Bujarski JJ
    Mol Plant Microbe Interact; 1993; 6(6):755-63. PubMed ID: 8118057
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Host-specific alterations in viral RNA accumulation and infection spread in a brome mosaic virus isolate with an expanded host range.
    De Jong W; Ahlquist P
    J Virol; 1995 Mar; 69(3):1485-92. PubMed ID: 7853481
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Second-site mutations in the brome mosaic virus RNA3 intercistronic region partially suppress a defect in coat protein mRNA transcription.
    Smirnyagina E; Hsu YH; Chua N; Ahlquist P
    Virology; 1994 Feb; 198(2):427-36. PubMed ID: 8291227
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Site-specific single amino acid changes to Lys or Arg in the central region of the movement protein of a hybrid bromovirus are required for adaptation to a nonhost.
    Sasaki N; Fujita Y; Mise K; Furusawa I
    Virology; 2001 Jan; 279(1):47-57. PubMed ID: 11145888
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Complete nucleotide sequences of the coat protein messenger RNAs of brome mosaic virus and cowpea chlorotic mottle virus.
    Dasgupta R; Kaesberg P
    Nucleic Acids Res; 1982 Jan; 10(2):703-13. PubMed ID: 6895941
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Host-specificity restriction by bromovirus cell-to-cell movement protein occurs after initial cell-to-cell spread of infection in nonhost plants.
    Mise K; Ahlquist P
    Virology; 1995 Jan; 206(1):276-86. PubMed ID: 7831782
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intercistronic as well as terminal sequences are required for efficient amplification of brome mosaic virus RNA3.
    French R; Ahlquist P
    J Virol; 1987 May; 61(5):1457-65. PubMed ID: 3573144
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.