BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 17365885)

  • 1. Comparison between the C-leg microprocessor-controlled prosthetic knee and non-microprocessor control prosthetic knees: a preliminary study of energy expenditure, obstacle course performance, and quality of life survey.
    Seymour R; Engbretson B; Kott K; Ordway N; Brooks G; Crannell J; Hickernell E; Wheeler K
    Prosthet Orthot Int; 2007 Mar; 31(1):51-61. PubMed ID: 17365885
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of function, performance, and preference as transfemoral amputees transition from mechanical to microprocessor control of the prosthetic knee.
    Hafner BJ; Willingham LL; Buell NC; Allyn KJ; Smith DG
    Arch Phys Med Rehabil; 2007 Feb; 88(2):207-17. PubMed ID: 17270519
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Energy expenditure during walking in amputees after disarticulation of the hip. A microprocessor-controlled swing-phase control knee versus a mechanical-controlled stance-phase control knee.
    Chin T; Sawamura S; Shiba R; Oyabu H; Nagakura Y; Nakagawa A
    J Bone Joint Surg Br; 2005 Jan; 87(1):117-9. PubMed ID: 15686251
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of a stance phase microprocessor-controlled knee prosthesis on level walking in lower functioning individuals with a transfemoral amputation.
    Eberly VJ; Mulroy SJ; Gronley JK; Perry J; Yule WJ; Burnfield JM
    Prosthet Orthot Int; 2014 Dec; 38(6):447-55. PubMed ID: 24135259
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of stance phase microprocessor-controlled knee prosthesis on ramp negotiation and community walking function in K2 level transfemoral amputees.
    Burnfield JM; Eberly VJ; Gronely JK; Perry J; Yule WJ; Mulroy SJ
    Prosthet Orthot Int; 2012 Mar; 36(1):95-104. PubMed ID: 22223685
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of a user-adaptive prosthetic knee on quality of life, balance confidence, and measures of mobility: a randomised cross-over trial.
    Prinsen EC; Nederhand MJ; Olsman J; Rietman JS
    Clin Rehabil; 2015 Jun; 29(6):581-91. PubMed ID: 25288047
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Biomechanics and evaluation of the microprocessor-controlled C-Leg exoprosthesis knee joint].
    Stinus H
    Z Orthop Ihre Grenzgeb; 2000; 138(3):278-82. PubMed ID: 10929622
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Osseointegrated trans-femoral amputation prostheses: prospective results of general and condition-specific quality of life in 18 patients at 2-year follow-up.
    Hagberg K; Brånemark R; Gunterberg B; Rydevik B
    Prosthet Orthot Int; 2008 Mar; 32(1):29-41. PubMed ID: 18330803
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Does having a computerized prosthetic knee influence cognitive performance during amputee walking?
    Williams RM; Turner AP; Orendurff M; Segal AD; Klute GK; Pecoraro J; Czerniecki J
    Arch Phys Med Rehabil; 2006 Jul; 87(7):989-94. PubMed ID: 16813788
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Energy expenditure of transfemoral amputees walking on a horizontal and tilted treadmill simulating different outdoor walking conditions.
    Starholm IM; Gjovaag T; Mengshoel AM
    Prosthet Orthot Int; 2010 Jun; 34(2):184-94. PubMed ID: 20141493
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Successful prosthetic fitting of elderly trans-femoral amputees with Intelligent Prosthesis (IP): a clinical pilot study.
    Chin T; Maeda Y; Sawamura S; Oyabu H; Nagakura Y; Takase I; Machida K
    Prosthet Orthot Int; 2007 Sep; 31(3):271-6. PubMed ID: 17979012
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immediate effects of a new microprocessor-controlled prosthetic knee joint: a comparative biomechanical evaluation.
    Bellmann M; Schmalz T; Ludwigs E; Blumentritt S
    Arch Phys Med Rehabil; 2012 Mar; 93(3):541-9. PubMed ID: 22373937
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional added value of microprocessor-controlled knee joints in daily life performance of Medicare Functional Classification Level-2 amputees.
    Theeven P; Hemmen B; Rings F; Meys G; Brink P; Smeets R; Seelen H
    J Rehabil Med; 2011 Oct; 43(10):906-15. PubMed ID: 21947182
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxygen consumption and cardiac response of short-leg and long-leg prosthetic ambulation in a patient with bilateral above-knee amputation: comparisons with able-bodied men.
    Crouse SF; Lessard CS; Rhodes J; Lowe RC
    Arch Phys Med Rehabil; 1990 Apr; 71(5):313-7. PubMed ID: 2327883
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energy expenditure and cardiac response in above-knee amputees while using prostheses with open and locked knee mechanisms.
    Isakov E; Susak Z; Becker E
    Scand J Rehabil Med Suppl; 1985; 12():108-11. PubMed ID: 3868034
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gait and balance of transfemoral amputees using passive mechanical and microprocessor-controlled prosthetic knees.
    Kaufman KR; Levine JA; Brey RH; Iverson BK; McCrady SK; Padgett DJ; Joyner MJ
    Gait Posture; 2007 Oct; 26(4):489-93. PubMed ID: 17869114
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of different microprocessor controlled knee joints on the energy consumption during walking in trans-femoral amputees: intelligent knee prosthesis (IP) versus C-leg.
    Chin T; Machida K; Sawamura S; Shiba R; Oyabu H; Nagakura Y; Takase I; Nakagawa A
    Prosthet Orthot Int; 2006 Apr; 30(1):73-80. PubMed ID: 16739783
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energy consumption during level walking with arm and knee immobilized.
    Hanada E; Kerrigan DC
    Arch Phys Med Rehabil; 2001 Sep; 82(9):1251-4. PubMed ID: 11552199
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differences in knee flexion between the Genium and C-Leg microprocessor knees while walking on level ground and ramps.
    Lura DJ; Wernke MM; Carey SL; Kahle JT; Miro RM; Highsmith MJ
    Clin Biomech (Bristol, Avon); 2015 Feb; 30(2):175-81. PubMed ID: 25537443
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High failure rates when avoiding obstacles during treadmill walking in patients with a transtibial amputation.
    Hofstad CJ; van der Linde H; Nienhuis B; Weerdesteyn V; Duysens J; Geurts AC
    Arch Phys Med Rehabil; 2006 Aug; 87(8):1115-22. PubMed ID: 16876558
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.