These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 17365885)

  • 1. Comparison between the C-leg microprocessor-controlled prosthetic knee and non-microprocessor control prosthetic knees: a preliminary study of energy expenditure, obstacle course performance, and quality of life survey.
    Seymour R; Engbretson B; Kott K; Ordway N; Brooks G; Crannell J; Hickernell E; Wheeler K
    Prosthet Orthot Int; 2007 Mar; 31(1):51-61. PubMed ID: 17365885
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of function, performance, and preference as transfemoral amputees transition from mechanical to microprocessor control of the prosthetic knee.
    Hafner BJ; Willingham LL; Buell NC; Allyn KJ; Smith DG
    Arch Phys Med Rehabil; 2007 Feb; 88(2):207-17. PubMed ID: 17270519
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Energy expenditure during walking in amputees after disarticulation of the hip. A microprocessor-controlled swing-phase control knee versus a mechanical-controlled stance-phase control knee.
    Chin T; Sawamura S; Shiba R; Oyabu H; Nagakura Y; Nakagawa A
    J Bone Joint Surg Br; 2005 Jan; 87(1):117-9. PubMed ID: 15686251
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of a stance phase microprocessor-controlled knee prosthesis on level walking in lower functioning individuals with a transfemoral amputation.
    Eberly VJ; Mulroy SJ; Gronley JK; Perry J; Yule WJ; Burnfield JM
    Prosthet Orthot Int; 2014 Dec; 38(6):447-55. PubMed ID: 24135259
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of stance phase microprocessor-controlled knee prosthesis on ramp negotiation and community walking function in K2 level transfemoral amputees.
    Burnfield JM; Eberly VJ; Gronely JK; Perry J; Yule WJ; Mulroy SJ
    Prosthet Orthot Int; 2012 Mar; 36(1):95-104. PubMed ID: 22223685
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of a user-adaptive prosthetic knee on quality of life, balance confidence, and measures of mobility: a randomised cross-over trial.
    Prinsen EC; Nederhand MJ; Olsman J; Rietman JS
    Clin Rehabil; 2015 Jun; 29(6):581-91. PubMed ID: 25288047
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Biomechanics and evaluation of the microprocessor-controlled C-Leg exoprosthesis knee joint].
    Stinus H
    Z Orthop Ihre Grenzgeb; 2000; 138(3):278-82. PubMed ID: 10929622
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Osseointegrated trans-femoral amputation prostheses: prospective results of general and condition-specific quality of life in 18 patients at 2-year follow-up.
    Hagberg K; Brånemark R; Gunterberg B; Rydevik B
    Prosthet Orthot Int; 2008 Mar; 32(1):29-41. PubMed ID: 18330803
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Does having a computerized prosthetic knee influence cognitive performance during amputee walking?
    Williams RM; Turner AP; Orendurff M; Segal AD; Klute GK; Pecoraro J; Czerniecki J
    Arch Phys Med Rehabil; 2006 Jul; 87(7):989-94. PubMed ID: 16813788
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Energy expenditure of transfemoral amputees walking on a horizontal and tilted treadmill simulating different outdoor walking conditions.
    Starholm IM; Gjovaag T; Mengshoel AM
    Prosthet Orthot Int; 2010 Jun; 34(2):184-94. PubMed ID: 20141493
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Successful prosthetic fitting of elderly trans-femoral amputees with Intelligent Prosthesis (IP): a clinical pilot study.
    Chin T; Maeda Y; Sawamura S; Oyabu H; Nagakura Y; Takase I; Machida K
    Prosthet Orthot Int; 2007 Sep; 31(3):271-6. PubMed ID: 17979012
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immediate effects of a new microprocessor-controlled prosthetic knee joint: a comparative biomechanical evaluation.
    Bellmann M; Schmalz T; Ludwigs E; Blumentritt S
    Arch Phys Med Rehabil; 2012 Mar; 93(3):541-9. PubMed ID: 22373937
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional added value of microprocessor-controlled knee joints in daily life performance of Medicare Functional Classification Level-2 amputees.
    Theeven P; Hemmen B; Rings F; Meys G; Brink P; Smeets R; Seelen H
    J Rehabil Med; 2011 Oct; 43(10):906-15. PubMed ID: 21947182
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxygen consumption and cardiac response of short-leg and long-leg prosthetic ambulation in a patient with bilateral above-knee amputation: comparisons with able-bodied men.
    Crouse SF; Lessard CS; Rhodes J; Lowe RC
    Arch Phys Med Rehabil; 1990 Apr; 71(5):313-7. PubMed ID: 2327883
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energy expenditure and cardiac response in above-knee amputees while using prostheses with open and locked knee mechanisms.
    Isakov E; Susak Z; Becker E
    Scand J Rehabil Med Suppl; 1985; 12():108-11. PubMed ID: 3868034
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gait and balance of transfemoral amputees using passive mechanical and microprocessor-controlled prosthetic knees.
    Kaufman KR; Levine JA; Brey RH; Iverson BK; McCrady SK; Padgett DJ; Joyner MJ
    Gait Posture; 2007 Oct; 26(4):489-93. PubMed ID: 17869114
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of different microprocessor controlled knee joints on the energy consumption during walking in trans-femoral amputees: intelligent knee prosthesis (IP) versus C-leg.
    Chin T; Machida K; Sawamura S; Shiba R; Oyabu H; Nagakura Y; Takase I; Nakagawa A
    Prosthet Orthot Int; 2006 Apr; 30(1):73-80. PubMed ID: 16739783
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energy consumption during level walking with arm and knee immobilized.
    Hanada E; Kerrigan DC
    Arch Phys Med Rehabil; 2001 Sep; 82(9):1251-4. PubMed ID: 11552199
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differences in knee flexion between the Genium and C-Leg microprocessor knees while walking on level ground and ramps.
    Lura DJ; Wernke MM; Carey SL; Kahle JT; Miro RM; Highsmith MJ
    Clin Biomech (Bristol); 2015 Feb; 30(2):175-81. PubMed ID: 25537443
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High failure rates when avoiding obstacles during treadmill walking in patients with a transtibial amputation.
    Hofstad CJ; van der Linde H; Nienhuis B; Weerdesteyn V; Duysens J; Geurts AC
    Arch Phys Med Rehabil; 2006 Aug; 87(8):1115-22. PubMed ID: 16876558
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.