These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 17365956)
1. Structure-activity relationships for abiotic thiol reactivity and aquatic toxicity of halo-substituted carbonyl compounds. Schultz TW; Ralston KE; Roberts DW; Veith GD; Aptula AO SAR QSAR Environ Res; 2007; 18(1-2):21-9. PubMed ID: 17365956 [TBL] [Abstract][Full Text] [Related]
2. Abiotic sulfhydryl reactivity: a predictor of aquatic toxicity for carbonyl-containing alpha,beta-unsaturated compounds. Yarbrough JW; Schultz TW Chem Res Toxicol; 2007 Mar; 20(3):558-62. PubMed ID: 17319700 [TBL] [Abstract][Full Text] [Related]
3. Identification of reactive toxicants: structure-activity relationships for amides. Schultz TW; Yarbrough JW; Koss SK Cell Biol Toxicol; 2006 Sep; 22(5):339-49. PubMed ID: 16845611 [TBL] [Abstract][Full Text] [Related]
4. Experimental reactivity parameters for toxicity modeling: application to the acute aquatic toxicity of SN2 electrophiles to Tetrahymena pyriformis. Roberts DW; Schultz TW; Wolf EM; Aptula AO Chem Res Toxicol; 2010 Jan; 23(1):228-34. PubMed ID: 19928804 [TBL] [Abstract][Full Text] [Related]
5. Thiol reactivity and its impact on the ciliate toxicity of α,β-unsaturated aldehydes, ketones, and esters. Böhme A; Thaens D; Schramm F; Paschke A; Schüürmann G Chem Res Toxicol; 2010 Dec; 23(12):1905-12. PubMed ID: 20923215 [TBL] [Abstract][Full Text] [Related]
6. Structure-activity relationships for aquatic toxicity to Tetrahymena: halogen-substituted aliphatic esters. DeWeese AD; Schultz TW Environ Toxicol; 2001; 16(1):54-60. PubMed ID: 11345545 [TBL] [Abstract][Full Text] [Related]
7. Structure-toxicity analyses of Tetrahymena pyriformis exposed to pyridines -- an examination into extension of surface-response domains. Seward JR; Cronin MT; Schultz TW SAR QSAR Environ Res; 2001 Feb; 11(5-6):489-512. PubMed ID: 11328716 [TBL] [Abstract][Full Text] [Related]
8. Prediction of aquatic toxicity: use of optimization of correlation weights of local graph invariants. Toropov AA; Schultz TW J Chem Inf Comput Sci; 2003; 43(2):560-7. PubMed ID: 12653522 [TBL] [Abstract][Full Text] [Related]
9. Trends in structure-toxicity relationships for carbonyl-containing alpha,beta-unsaturated compounds. Schultz TW; Yarbrough JW SAR QSAR Environ Res; 2004 Apr; 15(2):139-46. PubMed ID: 15199949 [TBL] [Abstract][Full Text] [Related]
10. Toxicity to Tetrahymena and abiotic thiol reactivity of aromatic isothiocyanates. Schultz TW; Yarbrough JW; Woldemeskel M Cell Biol Toxicol; 2005; 21(3-4):181-9. PubMed ID: 16328896 [TBL] [Abstract][Full Text] [Related]
11. Structure-toxicity relationships for the effects to Tetrahymena pyriformis of aliphatic, carbonyl-containing, alpha,beta-unsaturated chemicals. Schultz TW; Netzeva TI; Roberts DW; Cronin MT Chem Res Toxicol; 2005 Feb; 18(2):330-41. PubMed ID: 15720140 [TBL] [Abstract][Full Text] [Related]
12. Reactivity-based toxicity modelling of five-membered heterocyclic compounds: application to Tetrahymena pyriformis. Schultz TW; Sparfkin CL; Aptula AO SAR QSAR Environ Res; 2010 Oct; 21(7-8):681-91. PubMed ID: 21120756 [TBL] [Abstract][Full Text] [Related]
13. Formation of categories from structure-activity relationships to allow read-across for risk assessment: toxicity of alpha,beta-unsaturated carbonyl compounds. Koleva YK; Madden JC; Cronin MT Chem Res Toxicol; 2008 Dec; 21(12):2300-12. PubMed ID: 19053326 [TBL] [Abstract][Full Text] [Related]
14. Structure-activity relationships for reactivity of carbonyl-containing compounds with glutathione. Schultz TW; Yarbrough JW; Johnson EL SAR QSAR Environ Res; 2005 Aug; 16(4):313-22. PubMed ID: 16234173 [TBL] [Abstract][Full Text] [Related]
15. Quantitative structure-activity analyses of nitrobenzene toxicity to Tetrahymena pyriformis. Cronin MT; Gregory BW; Schultz TW Chem Res Toxicol; 1998 Aug; 11(8):902-8. PubMed ID: 9705752 [TBL] [Abstract][Full Text] [Related]
16. Structure-toxicity relationships for three mechanisms of action of toxicity to Vibrio fischeri. Cronin MT; Schultz TW Ecotoxicol Environ Saf; 1998 Jan; 39(1):65-9. PubMed ID: 9515077 [TBL] [Abstract][Full Text] [Related]
17. Kinetic glutathione chemoassay to quantify thiol reactivity of organic electrophiles--application to alpha,beta-unsaturated ketones, acrylates, and propiolates. Böhme A; Thaens D; Paschke A; Schüürmann G Chem Res Toxicol; 2009 Apr; 22(4):742-50. PubMed ID: 19317512 [TBL] [Abstract][Full Text] [Related]
18. Electrophilicity as a possible descriptor for toxicity prediction. Roy DR; Parthasarathi R; Maiti B; Subramanian V; Chattaraj PK Bioorg Med Chem; 2005 May; 13(10):3405-12. PubMed ID: 15848752 [TBL] [Abstract][Full Text] [Related]
19. Comparison of Tetrahymena pyriformis toxicity based on hydrophobicity, polarity, ionization and reactivity of class-based compounds. Su L; Fu L; He J; Qin W; Sheng L; Abraham MH; Zhao YH SAR QSAR Environ Res; 2012 Jul; 23(5-6):537-52. PubMed ID: 22463052 [TBL] [Abstract][Full Text] [Related]
20. Reactivity and aquatic toxicity of aromatic compounds transformable to quinone-type Michael acceptors. Bajot F; Cronin MT; Roberts DW; Schultz TW SAR QSAR Environ Res; 2011 Mar; 22(1-2):51-65. PubMed ID: 21391141 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]