BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

333 related articles for article (PubMed ID: 17367203)

  • 1. Modeling networks of coupled enzymatic reactions using the total quasi-steady state approximation.
    Ciliberto A; Capuani F; Tyson JJ
    PLoS Comput Biol; 2007 Mar; 3(3):e45. PubMed ID: 17367203
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reduced models of networks of coupled enzymatic reactions.
    Kumar A; Josić K
    J Theor Biol; 2011 Jun; 278(1):87-106. PubMed ID: 21377474
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stochastic chemical kinetics and the total quasi-steady-state assumption: application to the stochastic simulation algorithm and chemical master equation.
    Macnamara S; Bersani AM; Burrage K; Sidje RB
    J Chem Phys; 2008 Sep; 129(9):095105. PubMed ID: 19044893
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Michaelis-Menten kinetics at high enzyme concentrations.
    Tzafriri AR
    Bull Math Biol; 2003 Nov; 65(6):1111-29. PubMed ID: 14607291
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The total quasi-steady-state approximation for fully competitive enzyme reactions.
    Pedersena MG; Bersani AM; Bersani E
    Bull Math Biol; 2007 Jan; 69(1):433-57. PubMed ID: 16850351
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quasi-steady-state kinetics at enzyme and substrate concentrations in excess of the Michaelis-Menten constant.
    Rami Tzafriri A; Edelman ER
    J Theor Biol; 2007 Apr; 245(4):737-48. PubMed ID: 17234216
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Kinetics of reactions in multienzyme systems. I. Steady state processes in bienzyme systems. Lineal multienzyme sequences].
    Varfolomeev SD
    Mol Biol (Mosk); 1977; 11(3):564-81. PubMed ID: 752794
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enzyme kinetics at high enzyme concentration.
    Schnell S; Maini PK
    Bull Math Biol; 2000 May; 62(3):483-99. PubMed ID: 10812718
    [TBL] [Abstract][Full Text] [Related]  

  • 9. About and beyond the Henri-Michaelis-Menten rate equation for single-substrate enzyme kinetics.
    Bajzer Z; Strehler EE
    Biochem Biophys Res Commun; 2012 Jan; 417(3):982-5. PubMed ID: 22206668
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determining the transient kinetic behavior of complex multi-enzyme systems by use of network thermodynamics.
    Mikulecky DC; Thellier M
    C R Acad Sci III; 1993 Dec; 316(12):1399-403. PubMed ID: 8087618
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cooperativity and saturation in biochemical networks: a saturable formalism using Taylor series approximations.
    Sorribas A; Hernández-Bermejo B; Vilaprinyo E; Alves R
    Biotechnol Bioeng; 2007 Aug; 97(5):1259-77. PubMed ID: 17187441
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Zero-order ultrasensitivity: a study of criticality and fluctuations under the total quasi-steady state approximation in the linear noise regime.
    Jithinraj PK; Roy U; Gopalakrishnan M
    J Theor Biol; 2014 Mar; 344():1-11. PubMed ID: 24309434
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Validity of quasi-steady-state and transfer-function representations for input-output relation in a Michaelis-Menten reaction.
    Sakamoto N
    Biotechnol Bioeng; 1986 Aug; 28(8):1191-9. PubMed ID: 18555445
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An optimized algorithm for flux estimation from isotopomer distribution in glucose metabolites.
    Selivanov VA; Puigjaner J; Sillero A; Centelles JJ; Ramos-Montoya A; Lee PW; Cascante M
    Bioinformatics; 2004 Dec; 20(18):3387-97. PubMed ID: 15256408
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automatic decomposition of kinetic models of signaling networks minimizing the retroactivity among modules.
    Saez-Rodriguez J; Gayer S; Ginkel M; Gilles ED
    Bioinformatics; 2008 Aug; 24(16):i213-9. PubMed ID: 18689828
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulating the total level of a signaling protein can vary its dynamics in a range from switch like ultrasensitivity to adaptive responses.
    Soyer OS; Kuwahara H; Csikász-Nagy A
    FEBS J; 2009 Jun; 276(12):3290-8. PubMed ID: 19438711
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic disorder in single-molecule Michaelis-Menten kinetics: the reaction-diffusion formalism in the Wilemski-Fixman approximation.
    Chaudhury S; Cherayil BJ
    J Chem Phys; 2007 Sep; 127(10):105103. PubMed ID: 17867782
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biological networks in metabolic P systems.
    Manca V; Bianco L
    Biosystems; 2008 Mar; 91(3):489-98. PubMed ID: 17761386
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ProtNet: a tool for stochastic simulations of protein interaction networks dynamics.
    Bernaschi M; Castiglione F; Ferranti A; Gavrila C; Tinti M; Cesareni G
    BMC Bioinformatics; 2007 Mar; 8 Suppl 1(Suppl 1):S4. PubMed ID: 17430571
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stochastic simulation of enzyme-catalyzed reactions with disparate timescales.
    Barik D; Paul MR; Baumann WT; Cao Y; Tyson JJ
    Biophys J; 2008 Oct; 95(8):3563-74. PubMed ID: 18621809
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.