These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 173674)

  • 1. Proceedings: Factors affecting glycerol and dihydroxyacetone phosphorylation in Acetobacter xylinum.
    Weinhouse H; Benziman M
    Isr J Med Sci; 1975 Nov; 11(11):1179-80. PubMed ID: 173674
    [No Abstract]   [Full Text] [Related]  

  • 2. Phosphorylation of glycerol and dihydroxyacetone in Acetobacter xylinum and its possible regulatory role.
    Weinhouse H; Benziman M
    J Bacteriol; 1976 Aug; 127(2):747-54. PubMed ID: 956117
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glycerol kinase and dihydroxyacetone kinase in rat brain.
    Jenkins BT; Hajra AK
    J Neurochem; 1976 Feb; 26(2):377-85. PubMed ID: 3631
    [No Abstract]   [Full Text] [Related]  

  • 4. [Repression, by fructose, of the biosynthesis of 6-phosphofructokinase and phosphoglyceromutase in Acetobacter xylinum].
    Prieur P
    Bull Soc Chim Biol (Paris); 1969 Jan; 50(10):1769-82. PubMed ID: 4240519
    [No Abstract]   [Full Text] [Related]  

  • 5. [Dihydroxyacetone preparation via glycerin oxidation by a suspension of resting Acetobacter suboxydans cells].
    Pomortseva NV; Krasil'nikova TN; Paleeva MA; Nikolaev PI
    Prikl Biokhim Mikrobiol; 1974; 10(1):59-63. PubMed ID: 4463353
    [No Abstract]   [Full Text] [Related]  

  • 6. Activities of citrate synthase and other enzymes of Acetobacter xylinum in situ and in vitro.
    Swissa M; Weinhouse H; Benziman M
    Biochem J; 1976 Feb; 153(2):499-501. PubMed ID: 1275900
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Independent constitutive expression of the aerobic and anaerobic pathways of glycerol catabolism in Klebsiella aerogenes.
    Ruch FE; Lin EC
    J Bacteriol; 1975 Oct; 124(1):348-52. PubMed ID: 170247
    [TBL] [Abstract][Full Text] [Related]  

  • 8. alpha-Glycerophosphate and dihydroxyacetone phosphate metabolism in rats fed high-fat or high-sucrose diets.
    Molaparast-Shahidsaless F; Shrago E; Elson CE
    J Nutr; 1979 Sep; 109(9):1560-9. PubMed ID: 479951
    [No Abstract]   [Full Text] [Related]  

  • 9. Glycerol kinase as a substitute for dihydroxyacetone kinase in a mutant of Klebsiella pneumoniae.
    Jin RZ; Forage RG; Lin EC
    J Bacteriol; 1982 Dec; 152(3):1303-7. PubMed ID: 6292169
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proceedings: Phosphorylated forms of pyruvate, phosphate dikinase from Acetobacter xylinum.
    Milner Y; Friedman J; Cohn B
    Isr J Med Sci; 1975 Nov; 11(11):1180. PubMed ID: 1205752
    [No Abstract]   [Full Text] [Related]  

  • 11. Glycerol metabolism in higher plants: glycerol kinase.
    Sadava D; Moore K
    Biochem Biophys Res Commun; 1987 Mar; 143(3):977-83. PubMed ID: 3032191
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of immobilized cell preparation obtained from biomass of Gluconacetobacter xylinus bacteria in biotransformation of glycerol to dihydroxyacetone.
    Stasiak-Różańska L; Błażejak S; Miklaszewska A
    Acta Sci Pol Technol Aliment; 2011; 10(1):35-49. PubMed ID: 22232527
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polyprenol kinase in Acetobacter xylinum.
    Romero PA; Garcia RG; Dankert M
    Acta Physiol Lat Am; 1976; 26(5):434-7. PubMed ID: 210629
    [No Abstract]   [Full Text] [Related]  

  • 14. Evidence for lipid synthesis by the dihydroxyacetone phosphate pathway in rabbit lung subcellular fractions.
    Fisher AB; Huber GA; Furia L; Bassett D; Rabinowitz JL
    J Lab Clin Med; 1976 Jun; 87(6):1033-40. PubMed ID: 946974
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Renal glycerol metabolism and the distribution of glycerol kinase in rabbit nephron.
    Wirthensohn G; Vandewalle A; Guder WG
    Biochem J; 1981 Sep; 198(3):543-9. PubMed ID: 6275852
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The glycerol phosphate, dihydroxyacetone phosphate and monoacylglycerol pathways of glycerolipid synthesis in rat adipose-tissue homogenates.
    Dodds PF; Gurr MI; Brindley DN
    Biochem J; 1976 Dec; 160(3):693-700. PubMed ID: 1016248
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glycerol transport and phosphorylation by rat hepatocytes.
    Li CC; Lin EC
    J Cell Physiol; 1983 Nov; 117(2):230-4. PubMed ID: 6313704
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The relative utilization of the acyl dihydroxyacetone phosphate and glycerol phosphate pathways for synthesis of glycerolipids in various tumors and normal tissues.
    Pollock RJ; Hajra AK; Agranoff BW
    Biochim Biophys Acta; 1975 Mar; 380(3):421-35. PubMed ID: 1138875
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glycerol dissimilation in Rhodopseudomonas sphaeroides.
    Pike L; Sojka GA
    J Bacteriol; 1975 Dec; 124(3):1101-5. PubMed ID: 1081535
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cloning and overexpression in Escherichia coli of the gene encoding dihydroxyacetone kinase isoenzyme I from Schizosaccharomyces pombe, and its application to dihydroxyacetone phosphate production.
    Itoh N; Tujibata Y; Liu JQ
    Appl Microbiol Biotechnol; 1999 Feb; 51(2):193-200. PubMed ID: 10091325
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.