These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 17367548)

  • 1. EELS spectroscopy of iron fluorides and FeFx/C nanocomposite electrodes used in Li-ion batteries.
    Cosandey F; Al-Sharab JF; Badway F; Amatucci GG; Stadelmann P
    Microsc Microanal; 2007 Apr; 13(2):87-95. PubMed ID: 17367548
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fe valence determination and Li elemental distribution in lithiated FeO₀.₇F₁.₃/C nanocomposite battery materials by electron energy loss spectroscopy (EELS).
    Cosandey F; Su D; Sina M; Pereira N; Amatucci GG
    Micron; 2012 Jan; 43(1):22-9. PubMed ID: 21696971
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries.
    Poizot P; Laruelle S; Grugeon S; Dupont L; Tarascon JM
    Nature; 2000 Sep; 407(6803):496-9. PubMed ID: 11028997
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conversion reaction mechanisms in lithium ion batteries: study of the binary metal fluoride electrodes.
    Wang F; Robert R; Chernova NA; Pereira N; Omenya F; Badway F; Hua X; Ruotolo M; Zhang R; Wu L; Volkov V; Su D; Key B; Whittingham MS; Grey CP; Amatucci GG; Zhu Y; Graetz J
    J Am Chem Soc; 2011 Nov; 133(46):18828-36. PubMed ID: 21894971
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatially resolved energy electron loss spectroscopy studies of iron oxide nanoparticles.
    Jasinski J; Pinkerton KE; Kennedy IM; Leppert VJ
    Microsc Microanal; 2006 Oct; 12(5):424-31. PubMed ID: 16984669
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A STEM/EELS method for mapping iron valence ratios in oxide minerals.
    Cavé L; Al T; Loomer D; Cogswell S; Weaver L
    Micron; 2006; 37(4):301-9. PubMed ID: 16360318
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pomegranate-Structured Conversion-Reaction Cathode with a Built-in Li Source for High-Energy Li-Ion Batteries.
    Fan X; Zhu Y; Luo C; Suo L; Lin Y; Gao T; Xu K; Wang C
    ACS Nano; 2016 May; 10(5):5567-77. PubMed ID: 27163232
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A transmission electron microscopy study of Fe-Co alloy nanoparticles in silica aerogel matrix using HREM, EDX, and EELS.
    Falqui A; Corrias A; Gass M; Mountjoy G
    Microsc Microanal; 2009 Apr; 15(2):114-24. PubMed ID: 19284893
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identifying the local structures formed during lithiation of the conversion material, iron fluoride, in a Li ion battery: a solid-state NMR, X-ray diffraction, and pair distribution function analysis study.
    Yamakawa N; Jiang M; Key B; Grey CP
    J Am Chem Soc; 2009 Aug; 131(30):10525-36. PubMed ID: 19585988
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxidation states of Mn and Fe in various compound oxide systems.
    Schmid HK; Mader W
    Micron; 2006; 37(5):426-32. PubMed ID: 16469500
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Confined iron fluoride@CMK-3 nanocomposite as an ultrahigh rate capability cathode for Li-ion batteries.
    Li B; Zhang N; Sun K
    Small; 2014 May; 10(10):2039-46. PubMed ID: 24573944
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Facile synthesis of C-FeF
    Reddy MA; Breitung B; Kiran Chakravadhanula VS; Helen M; Witte R; Rongeat C; Kübel C; Hahn H; Fichtner M
    RSC Adv; 2018 Oct; 8(64):36802-36811. PubMed ID: 35558933
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microstructure and electronic band structure of pulsed laser deposited iron fluoride thin film for battery electrodes.
    Santos-Ortiz R; Volkov V; Schmid S; Kuo FL; Kisslinger K; Nag S; Banerjee R; Zhu Y; Shepherd ND
    ACS Appl Mater Interfaces; 2013 Apr; 5(7):2387-91. PubMed ID: 23402585
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Valence electron energy-loss spectroscopy of silicon negative electrodes for lithium batteries.
    Danet J; Brousse T; Rasim K; Guyomard D; Moreau P
    Phys Chem Chem Phys; 2010 Jan; 12(1):220-6. PubMed ID: 20024463
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combination of lightweight elements and nanostructured materials for batteries.
    Chen J; Cheng F
    Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Beam damage suppression of low-kappa porous Si-O-C films by cryo-electron-energy loss spectroscopy (EELS).
    Otsuka Y; Shimizu Y; Tanaka I
    J Electron Microsc (Tokyo); 2009 Apr; 58(2):29-34. PubMed ID: 19218485
    [TBL] [Abstract][Full Text] [Related]  

  • 17. X-ray absorption spectroscopic study on the electronic structure of Li(1)(-)(x)()CoPO(4) electrodes as 4.8 V positive electrodes for rechargeable lithium ion batteries.
    Nakayama M; Goto S; Uchimoto Y; Wakihara M; Kitajima Y; Miyanaga T; Watanabe I
    J Phys Chem B; 2005 Jun; 109(22):11197-203. PubMed ID: 16852366
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metal hydrides for lithium-ion batteries.
    Oumellal Y; Rougier A; Nazri GA; Tarascon JM; Aymard L
    Nat Mater; 2008 Nov; 7(11):916-21. PubMed ID: 18849978
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of Lithium Ion Battery Materials with Valence Electron Energy-Loss Spectroscopy.
    Castro FC; Dravid VP
    Microsc Microanal; 2018 Jun; 24(3):214-220. PubMed ID: 29877170
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sodiation via heterogeneous disproportionation in FeF2 electrodes for sodium-ion batteries.
    He K; Zhou Y; Gao P; Wang L; Pereira N; Amatucci GG; Nam KW; Yang XQ; Zhu Y; Wang F; Su D
    ACS Nano; 2014 Jul; 8(7):7251-9. PubMed ID: 24911154
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.