BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 17367709)

  • 1. Optimizing synthesis and expression of transmembrane peptides and proteins.
    Cunningham F; Deber CM
    Methods; 2007 Apr; 41(4):370-80. PubMed ID: 17367709
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of peptides corresponding to the seven transmembrane domains of human adenosine A2a receptor.
    Lazarova T; Brewin KA; Stoeber K; Robinson CR
    Biochemistry; 2004 Oct; 43(40):12945-54. PubMed ID: 15461468
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aromatic and cation-pi interactions enhance helix-helix association in a membrane environment.
    Johnson RM; Hecht K; Deber CM
    Biochemistry; 2007 Aug; 46(32):9208-14. PubMed ID: 17658897
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polar residue tagging of transmembrane peptides.
    Melnyk RA; Partridge AW; Yip J; Wu Y; Goto NK; Deber CM
    Biopolymers; 2003; 71(6):675-85. PubMed ID: 14991677
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expression and purification of two hydrophobic double-spanning membrane proteins derived from the cystic fibrosis transmembrane conductance regulator.
    Therien AG; Glibowicka M; Deber CM
    Protein Expr Purif; 2002 Jun; 25(1):81-6. PubMed ID: 12071702
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A mutational study of transmembrane helix-helix interactions.
    Prodöhl A; Weber M; Dreher C; Schneider D
    Biochimie; 2007 Nov; 89(11):1433-7. PubMed ID: 17688996
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrophobic helical hairpins: design and packing interactions in membrane environments.
    Johnson RM; Heslop CL; Deber CM
    Biochemistry; 2004 Nov; 43(45):14361-9. PubMed ID: 15533040
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biosynthesis and purification of a hydrophobic peptide from transmembrane domains of G-protein-coupled CB2 receptor.
    Zheng H; Zhao J; Wang S; Lin CM; Chen T; Jones DH; Ma C; Opella S; Xie XQ
    J Pept Res; 2005 Apr; 65(4):450-8. PubMed ID: 15813893
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tilted peptides: a structural motif involved in protein membrane insertion?
    Lins L; Brasseur R
    J Pept Sci; 2008 Apr; 14(4):416-22. PubMed ID: 18069746
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sexual conjugation in yeast: A paradigm to study G-protein-coupled receptor domain structure.
    Naider F; Estephan R; Englander J; Suresh Babu VV; Arevalo E; Samples K; Becker JM
    Biopolymers; 2004; 76(2):119-28. PubMed ID: 15054892
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression and biophysical analysis of two double-transmembrane domain-containing fragments from a yeast G protein-coupled receptor.
    Cohen LS; Arshava B; Estephan R; Englander J; Kim H; Hauser M; Zerbe O; Ceruso M; Becker JM; Naider F
    Biopolymers; 2008; 90(2):117-30. PubMed ID: 18260136
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein-lipid interactions studied with designed transmembrane peptides: role of hydrophobic matching and interfacial anchoring.
    de Planque MR; Killian JA
    Mol Membr Biol; 2003; 20(4):271-84. PubMed ID: 14578043
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selective labeling of a membrane peptide with 15N-amino acids using cells grown in rich medium.
    Englander J; Cohen L; Arshava B; Estephan R; Becker JM; Naider F
    Biopolymers; 2006; 84(5):508-18. PubMed ID: 16741986
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Peptide models of membrane protein folding.
    Rath A; Tulumello DV; Deber CM
    Biochemistry; 2009 Apr; 48(14):3036-45. PubMed ID: 19278229
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hetero-assembly between all-L- and all-D-amino acid transmembrane domains: forces involved and implication for inactivation of membrane proteins.
    Sal-Man N; Gerber D; Shai Y
    J Mol Biol; 2004 Nov; 344(3):855-64. PubMed ID: 15533450
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of hydrophobic matching on association of model transmembrane fragments containing a minimised glycophorin A dimerisation motif.
    Orzáez M; Lukovic D; Abad C; Pérez-Payá E; Mingarro I
    FEBS Lett; 2005 Mar; 579(7):1633-8. PubMed ID: 15757653
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A fluorescence method to define transmembrane alpha-helices in membrane proteins: studies with bacterial diacylglycerol kinase.
    Jittikoon J; East JM; Lee AG
    Biochemistry; 2007 Sep; 46(38):10950-9. PubMed ID: 17722884
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A role for transmembrane domains V and VI in ligand binding and maturation of the angiotensin II AT1 receptor.
    Pignatari GC; Rozenfeld R; Ferro ES; Oliveira L; Paiva AC; Devi LA
    Biol Chem; 2006 Mar; 387(3):269-76. PubMed ID: 16542148
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis, biosynthesis, and characterization of transmembrane domains of a G protein-coupled receptor.
    Naider F
    Methods Mol Biol; 2007; 386():95-121. PubMed ID: 18604944
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Revisited and large-scale synthesis and purification of the mutated and wild type neu/erbB-2 membrane-spanning segment.
    Khemtémourian L; Lavielle S; Bathany K; Schmitter JM; Dufourc EJ
    J Pept Sci; 2006 May; 12(5):361-8. PubMed ID: 16285025
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.