These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Interplay of calcium and cadmium in mediating cadmium toxicity. Choong G; Liu Y; Templeton DM Chem Biol Interact; 2014 Mar; 211():54-65. PubMed ID: 24463198 [TBL] [Abstract][Full Text] [Related]
4. Initiation of caspase-independent death in mouse mesangial cells by Cd2+: involvement of p38 kinase and CaMK-II. Liu Y; Templeton DM J Cell Physiol; 2008 Nov; 217(2):307-18. PubMed ID: 18506790 [TBL] [Abstract][Full Text] [Related]
6. Pleiotropic effects of cadmium in mesangial cells. Xiao W; Liu Y; Templeton DM Toxicol Appl Pharmacol; 2009 Aug; 238(3):315-26. PubMed ID: 19233221 [TBL] [Abstract][Full Text] [Related]
7. Involvement of CaMK-IIδ and gelsolin in Cd(2+) -dependent cytoskeletal effects in mesangial cells. Liu Y; Templeton DM J Cell Physiol; 2013 Jan; 228(1):78-86. PubMed ID: 22553113 [TBL] [Abstract][Full Text] [Related]
8. Ca(2+)/calmodulin-dependent protein kinase II inhibition by heparin in mesangial cells. Xiao W; Liu Y; Templeton DM Am J Physiol Renal Physiol; 2005 Jan; 288(1):F142-9. PubMed ID: 15383398 [TBL] [Abstract][Full Text] [Related]
9. Involvement of phosphorylated Ca2+/calmodulin-dependent protein kinase II and phosphorylated extracellular signal-regulated protein in the mouse formalin pain model. Choi SS; Seo YJ; Shim EJ; Kwon MS; Lee JY; Ham YO; Suh HW Brain Res; 2006 Sep; 1108(1):28-38. PubMed ID: 16863646 [TBL] [Abstract][Full Text] [Related]
10. Role of the cytoskeleton in Cd2+-induced death of mouse mesangial cells. Liu Y; Templeton DM Can J Physiol Pharmacol; 2010 Mar; 88(3):341-52. PubMed ID: 20393599 [TBL] [Abstract][Full Text] [Related]
11. Differential calreticulin expression affects focal contacts via the calmodulin/CaMK II pathway. Szabo E; Papp S; Opas M J Cell Physiol; 2007 Oct; 213(1):269-77. PubMed ID: 17516550 [TBL] [Abstract][Full Text] [Related]
12. Cadmium affects focal adhesion kinase (FAK) in mesangial cells: involvement of CaMK-II and the actin cytoskeleton. Choong G; Liu Y; Templeton DM J Cell Biochem; 2013 Aug; 114(8):1832-42. PubMed ID: 23463649 [TBL] [Abstract][Full Text] [Related]
15. Conversion to Ca(2+)-independent form of Ca2+/calmodulin protein kinase II in rat pancreatic acini. Duan RD; Guo YJ; Williams JA Biochem Biophys Res Commun; 1994 Feb; 199(1):368-73. PubMed ID: 8123036 [TBL] [Abstract][Full Text] [Related]
16. Activation of calcium-dependent kinases and epidermal growth factor receptor regulate muscarinic acetylcholine receptor-mediated MAPK/ERK activation in thyroid epithelial cells. Montiel M; Quesada J; Jiménez E Cell Signal; 2007 Oct; 19(10):2138-46. PubMed ID: 17643958 [TBL] [Abstract][Full Text] [Related]
17. [Effects of opioids on Ca2+/calmodulin dependent protein kinase signal pathway in NG108-15 cells]. Guo QM; Liu JS Yao Xue Xue Bao; 2001 Sep; 36(9):652-6. PubMed ID: 12580100 [TBL] [Abstract][Full Text] [Related]
18. Effects of cadmium on the actin cytoskeleton in renal mesangial cells. Templeton DM; Liu Y Can J Physiol Pharmacol; 2013 Jan; 91(1):1-7. PubMed ID: 23368511 [TBL] [Abstract][Full Text] [Related]
19. Kainic acid (KA)-induced Ca2+/calmodulin-dependent protein kinase II (CaMK II) expression in the neurons, astrocytes and microglia of the mouse hippocampal CA3 region, and the phosphorylated CaMK II only in the hippocampal neurons. Suh HW; Lee HK; Seo YJ; Kwon MS; Shim EJ; Lee JY; Choi SS; Lee JH Neurosci Lett; 2005 Jun; 381(3):223-7. PubMed ID: 15896474 [TBL] [Abstract][Full Text] [Related]
20. Pharmacological discrimination of protein kinase associated exocytosis mechanisms between dopamine and 3,4-dihydroxyphenylalanine in rat striatum using in vivo microdialysis. Zhu G; Okada M; Yoshida S; Hirose S; Kaneko S Neurosci Lett; 2004 Jun; 363(2):120-4. PubMed ID: 15172098 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]