BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 17367895)

  • 1. Structure-based discovery of new small molecule inhibitors of low molecular weight protein tyrosine phosphatase.
    Vidal D; Blobel J; Pérez Y; Thormann M; Pons M
    Eur J Med Chem; 2007 Aug; 42(8):1102-8. PubMed ID: 17367895
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure-based optimization of benzoic acids as inhibitors of protein tyrosine phosphatase 1B and low molecular weight protein tyrosine phosphatase.
    Maccari R; Ottanà R; Ciurleo R; Paoli P; Manao G; Camici G; Laggner C; Langer T
    ChemMedChem; 2009 Jun; 4(6):957-62. PubMed ID: 19288492
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Discovery of new potent human protein tyrosine phosphatase inhibitors via pharmacophore and QSAR analysis followed by in silico screening.
    Taha MO; Bustanji Y; Al-Bakri AG; Yousef AM; Zalloum WA; Al-Masri IM; Atallah N
    J Mol Graph Model; 2007 Mar; 25(6):870-84. PubMed ID: 17035054
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Strategies for developing protein tyrosine phosphatase inhibitors.
    Tautz L; Mustelin T
    Methods; 2007 Jul; 42(3):250-60. PubMed ID: 17532512
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Natural compounds as a source of protein tyrosine phosphatase inhibitors: application to the rational design of small-molecule derivatives.
    Ferreira CV; Justo GZ; Souza AC; Queiroz KC; Zambuzzi WF; Aoyama H; Peppelenbosch MP
    Biochimie; 2006 Dec; 88(12):1859-73. PubMed ID: 17010496
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-throughput discovery of Mycobacterium tuberculosis protein tyrosine phosphatase B (MptpB) inhibitors using click chemistry.
    Tan LP; Wu H; Yang PY; Kalesh KA; Zhang X; Hu M; Srinivasan R; Yao SQ
    Org Lett; 2009 Nov; 11(22):5102-5. PubMed ID: 19852491
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Discovery of novel PRL-3 inhibitors based on the structure-based virtual screening.
    Park H; Jung SK; Jeong DG; Ryu SE; Kim SJ
    Bioorg Med Chem Lett; 2008 Apr; 18(7):2250-5. PubMed ID: 18358718
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure-based virtual screening approach to the discovery of novel inhibitors of eyes absent 2 phosphatase with various metal chelating moieties.
    Park H; Jung SK; Yu KR; Kim JH; Kim YS; Ko JH; Park BC; Kim SJ
    Chem Biol Drug Des; 2011 Oct; 78(4):642-50. PubMed ID: 21777393
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis, activity and molecular modeling of a new series of chromones as low molecular weight protein tyrosine phosphatase inhibitors.
    Forghieri M; Laggner C; Paoli P; Langer T; Manao G; Camici G; Bondioli L; Prati F; Costantino L
    Bioorg Med Chem; 2009 Apr; 17(7):2658-72. PubMed ID: 19297174
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure-based design of protein tyrosine phosphatase-1B inhibitors.
    Black E; Breed J; Breeze AL; Embrey K; Garcia R; Gero TW; Godfrey L; Kenny PW; Morley AD; Minshull CA; Pannifer AD; Read J; Rees A; Russell DJ; Toader D; Tucker J
    Bioorg Med Chem Lett; 2005 May; 15(10):2503-7. PubMed ID: 15863305
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Critical assessment of the automated AutoDock as a new docking tool for virtual screening.
    Park H; Lee J; Lee S
    Proteins; 2006 Nov; 65(3):549-54. PubMed ID: 16988956
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thiobarbiturates as sirtuin inhibitors: virtual screening, free-energy calculations, and biological testing.
    Uciechowska U; Schemies J; Neugebauer RC; Huda EM; Schmitt ML; Meier R; Verdin E; Jung M; Sippl W
    ChemMedChem; 2008 Dec; 3(12):1965-76. PubMed ID: 18985648
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A gatekeeper residue for inhibitor sensitization of protein tyrosine phosphatases.
    Bishop AC; Blair ER
    Bioorg Med Chem Lett; 2006 Aug; 16(15):4002-6. PubMed ID: 16716588
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibitors of protein tyrosine phosphatases: next-generation drugs?
    Bialy L; Waldmann H
    Angew Chem Int Ed Engl; 2005 Jun; 44(25):3814-39. PubMed ID: 15900534
    [TBL] [Abstract][Full Text] [Related]  

  • 15. BEAR, a novel virtual screening methodology for drug discovery.
    Degliesposti G; Portioli C; Parenti MD; Rastelli G
    J Biomol Screen; 2011 Jan; 16(1):129-33. PubMed ID: 21084717
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design and discovery of plasmepsin II inhibitors using an automated workflow on large-scale grids.
    Degliesposti G; Kasam V; Da Costa A; Kang HK; Kim N; Kim DW; Breton V; Kim D; Rastelli G
    ChemMedChem; 2009 Jul; 4(7):1164-73. PubMed ID: 19437467
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure-based drug design of new leads for phosphatase research.
    Combs AP
    IDrugs; 2007 Feb; 10(2):112-5. PubMed ID: 17285463
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Validation of an automated procedure for the prediction of relative free energies of binding on a set of aldose reductase inhibitors.
    Ferrari AM; Degliesposti G; Sgobba M; Rastelli G
    Bioorg Med Chem; 2007 Dec; 15(24):7865-77. PubMed ID: 17870536
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probing acid replacements of thiophene PTP1B inhibitors.
    Wan ZK; Follows B; Kirincich S; Wilson D; Binnun E; Xu W; Joseph-McCarthy D; Wu J; Smith M; Zhang YL; Tam M; Erbe D; Tam S; Saiah E; Lee J
    Bioorg Med Chem Lett; 2007 May; 17(10):2913-20. PubMed ID: 17336064
    [TBL] [Abstract][Full Text] [Related]  

  • 20. BRUTUS: optimization of a grid-based similarity function for rigid-body molecular superposition. 1. Alignment and virtual screening applications.
    Tervo AJ; Rönkkö T; Nyrönen TH; Poso A
    J Med Chem; 2005 Jun; 48(12):4076-86. PubMed ID: 15943481
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.