BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

563 related articles for article (PubMed ID: 17367907)

  • 1. Estimation of interindividual pharmacokinetic variability factor for inhaled volatile organic chemicals using a probability-bounds approach.
    Nong A; Krishnan K
    Regul Toxicol Pharmacol; 2007 Jun; 48(1):93-101. PubMed ID: 17367907
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physiological-model-based derivation of the adult and child pharmacokinetic intraspecies uncertainty factors for volatile organic compounds.
    Pelekis M; Gephart LA; Lerman SE
    Regul Toxicol Pharmacol; 2001 Feb; 33(1):12-20. PubMed ID: 11259175
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An assessment of the impact of physico-chemical and biochemical characteristics on the human kinetic adjustment factor for systemic toxicants.
    Valcke M; Krishnan K
    Toxicology; 2011 Aug; 286(1-3):36-47. PubMed ID: 21605617
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessing the impact of the duration and intensity of inhalation exposure on the magnitude of the variability of internal dose metrics in children and adults.
    Valcke M; Krishnan K
    Inhal Toxicol; 2011 Dec; 23(14):863-77. PubMed ID: 22084919
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative structure-property relationships for interspecies extrapolation of the inhalation pharmacokinetics of organic chemicals.
    Béliveau M; Lipscomb J; Tardif R; Krishnan K
    Chem Res Toxicol; 2005 Mar; 18(3):475-85. PubMed ID: 15777087
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting age-appropriate pharmacokinetics of six volatile organic compounds in the rat utilizing physiologically based pharmacokinetic modeling.
    Rodriguez CE; Mahle DA; Gearhart JM; Mattie DR; Lipscomb JC; Cook RS; Barton HA
    Toxicol Sci; 2007 Jul; 98(1):43-56. PubMed ID: 17426107
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A spreadsheet program for modeling quantitative structure-pharmacokinetic relationships for inhaled volatile organics in humans.
    Béliveau M; Krishnan K
    SAR QSAR Environ Res; 2005; 16(1-2):63-77. PubMed ID: 15844443
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemical-specific screening criteria for interpretation of biomonitoring data for volatile organic compounds (VOCs)--application of steady-state PBPK model solutions.
    Aylward LL; Kirman CR; Blount BC; Hays SM
    Regul Toxicol Pharmacol; 2010 Oct; 58(1):33-44. PubMed ID: 20685286
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Variability in biological exposure indices using physiologically based pharmacokinetic modeling and Monte Carlo simulation.
    Thomas RS; Bigelow PL; Keefe TJ; Yang RS
    Am Ind Hyg Assoc J; 1996 Jan; 57(1):23-32. PubMed ID: 8588550
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular structure-based prediction of the steady-state blood concentrations of inhaled organics in rats.
    Béliveau M; Krishnan K
    Toxicol Mech Methods; 2005; 15(5):361-6. PubMed ID: 20021057
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a screening approach to interpret human biomonitoring data on volatile organic compounds: reverse dosimetry on biomonitoring data for trichloroethylene.
    Liao KH; Tan YM; Clewell HJ
    Risk Anal; 2007 Oct; 27(5):1223-36. PubMed ID: 18076492
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative structure-property relationships for physiologically based pharmacokinetic modeling of volatile organic chemicals in rats.
    Béliveau M; Tardif R; Krishnan K
    Toxicol Appl Pharmacol; 2003 Jun; 189(3):221-32. PubMed ID: 12791307
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physiological modeling of age-specific changes in the pharmacokinetics of organic chemicals in children.
    Price K; Haddad S; Krishnan K
    J Toxicol Environ Health A; 2003 Mar; 66(5):417-33. PubMed ID: 12712630
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extrahepatic metabolism by CYP2E1 in PBPK modeling of lipophilic volatile organic chemicals: impacts on metabolic parameter estimation and prediction of dose metrics.
    Yoon M; Madden MC; Barton HA
    J Toxicol Environ Health A; 2007 Sep; 70(18):1527-41. PubMed ID: 17710613
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of a physiologically based pharmacokinetic model to identify exposures consistent with human biomonitoring data for chloroform.
    Tan YM; Liao KH; Conolly RB; Blount BC; Mason AM; Clewell HJ
    J Toxicol Environ Health A; 2006 Sep; 69(18):1727-56. PubMed ID: 16864423
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Steady-state solutions to PBPK models and their applications to risk assessment I: Route-to-route extrapolation of volatile chemicals.
    Chiu WA; White P
    Risk Anal; 2006 Jun; 26(3):769-80. PubMed ID: 16834633
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reconstructing week-long exposures to volatile organic compounds using physiologically based pharmacokinetic models.
    Roy A; Georgopoulos PG
    J Expo Anal Environ Epidemiol; 1998; 8(3):407-22. PubMed ID: 9679220
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of the impact of the exposure route on the human kinetic adjustment factor.
    Valcke M; Krishnan K
    Regul Toxicol Pharmacol; 2011 Mar; 59(2):258-69. PubMed ID: 20969910
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The utility of PBPK in the safety assessment of chloroform and carbon tetrachloride.
    Delic JI; Lilly PD; MacDonald AJ; Loizou GD
    Regul Toxicol Pharmacol; 2000 Oct; 32(2):144-55. PubMed ID: 11067771
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An integrated QSPR-PBPK modelling approach for in vitro-in vivo extrapolation of pharmacokinetics in rats.
    Kamgang E; Peyret T; Krishnan K
    SAR QSAR Environ Res; 2008; 19(7-8):669-80. PubMed ID: 19061083
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.