BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 17368423)

  • 1. Functional incorporation of the pore forming segment of AChR M2 into tethered bilayer lipid membranes.
    Vockenroth IK; Atanasova PP; Long JR; Jenkins AT; Knoll W; Köper I
    Biochim Biophys Acta; 2007 May; 1768(5):1114-20. PubMed ID: 17368423
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A molecular toolkit for highly insulating tethered bilayer lipid membranes on various substrates.
    Atanasov V; Atanasova PP; Vockenroth IK; Knorr N; Köper I
    Bioconjug Chem; 2006; 17(3):631-7. PubMed ID: 16704200
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sphingomyelin composition and physical asymmetries in native acetylcholine receptor-rich membranes.
    Bonini IC; Antollini SS; Gutiérrez-Merino C; Barrantes FJ
    Eur Biophys J; 2002 Oct; 31(6):417-27. PubMed ID: 12355251
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional characterization of PorB class II porin from Neisseria meningitidis using a tethered bilayer lipid membrane.
    Jadhav SR; Zheng Y; Michael Garavito R; Mark Worden R
    Biosens Bioelectron; 2008 Dec; 24(4):837-41. PubMed ID: 18722761
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transmembrane Signaling with Lipid-Bilayer Assemblies as a Platform for Channel-Based Biosensing.
    Sugawara M
    Chem Rec; 2018 Apr; 18(4):433-444. PubMed ID: 29135061
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Impact of an Anchoring Layer on the Formation of Tethered Bilayer Lipid Membranes on Silver Substrates.
    Aleknavičienė I; Talaikis M; Budvytyte R; Valincius G
    Molecules; 2021 Nov; 26(22):. PubMed ID: 34833969
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional tethered bilayer lipid membranes on aluminum oxide.
    Roskamp RF; Vockenroth IK; Eisenmenger N; Braunagel J; Köper I
    Chemphyschem; 2008 Sep; 9(13):1920-4. PubMed ID: 18704903
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural and dynamic studies of the gamma-M4 trans-membrane domain of the nicotinic acetylcholine receptor.
    Williamson PT; Zandomeneghi G; Barrantes FJ; Watts A; Meier BH
    Mol Membr Biol; 2005; 22(6):485-96. PubMed ID: 16373320
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tethered bilayer lipid membranes (tBLMs): interest and applications for biological membrane investigations.
    Rebaud S; Maniti O; Girard-Egrot AP
    Biochimie; 2014 Dec; 107 Pt A():135-42. PubMed ID: 24998327
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Incorporation of alpha-hemolysin in different tethered bilayer lipid membrane architectures.
    Vockenroth IK; Atanasova PP; Jenkins AT; Köper I
    Langmuir; 2008 Jan; 24(2):496-502. PubMed ID: 18085805
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of pore formation by streptolysin O on supported lipid membranes by impedance spectroscopy and surface plasmon resonance spectroscopy.
    Wilkop T; Xu D; Cheng Q
    Langmuir; 2007 Jan; 23(3):1403-9. PubMed ID: 17241065
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insulating tethered bilayer lipid membranes to study membrane proteins.
    Köper I
    Mol Biosyst; 2007 Oct; 3(10):651-7. PubMed ID: 17882328
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interactions of the M2delta segment of the acetylcholine receptor with lipid bilayers: a continuum-solvent model study.
    Kessel A; Haliloglu T; Ben-Tal N
    Biophys J; 2003 Dec; 85(6):3687-95. PubMed ID: 14645060
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modification of tethered bilayers by phospholipid exchange with vesicles.
    Budvytyte R; Mickevicius M; Vanderah DJ; Heinrich F; Valincius G
    Langmuir; 2013 Apr; 29(13):4320-7. PubMed ID: 23445262
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transmembrane segment M2 of glycine receptor as a model system for the pore-forming structure of ion channels.
    Bednarczyk P; Szewczyk A; Dołowy K
    Acta Biochim Pol; 2002; 49(4):869-75. PubMed ID: 12545193
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formation and finite element analysis of tethered bilayer lipid structures.
    Kwak KJ; Valincius G; Liao WC; Hu X; Wen X; Lee A; Yu B; Vanderah DJ; Lu W; Lee LJ
    Langmuir; 2010 Dec; 26(23):18199-208. PubMed ID: 20977245
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tethered bilayer lipid membranes based on monolayers of thiolipids mixed with a complementary dilution molecule. 1. Incorporation of channel peptides.
    He L; Robertson JW; Li J; Kärcher I; Schiller SM; Knoll W; Naumann R
    Langmuir; 2005 Dec; 21(25):11666-72. PubMed ID: 16316098
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of the structure of cholesterol-based tethered bilayer lipid membranes on ionophore activity.
    Kendall JK; Johnson BR; Symonds PH; Imperato G; Bushby RJ; Gwyer JD; van Berkel C; Evans SD; Jeuken LJ
    Chemphyschem; 2010 Jul; 11(10):2191-8. PubMed ID: 20512836
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrochemical Impedance Spectroscopy as a Convenient Tool to Characterize Tethered Bilayer Membranes.
    Penkauskas T; Ambrulevičius F; Valinčius G
    Methods Mol Biol; 2022; 2402():31-59. PubMed ID: 34854034
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sensing of pathogenic bacteria based on their interaction with supported bilayer membranes studied by impedance spectroscopy and surface plasmon resonance.
    Tun TN; Cameron PJ; Jenkins AT
    Biosens Bioelectron; 2011 Oct; 28(1):227-31. PubMed ID: 21835605
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.