BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 17368434)

  • 1. Influence of norepinephrine on somatosensory neuronal responses in the rat thalamus: a combined modeling and in vivo multi-channel, multi-neuron recording study.
    Moxon KA; Devilbiss DM; Chapin JK; Waterhouse BD
    Brain Res; 2007 May; 1147():105-23. PubMed ID: 17368434
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effects of tonic locus ceruleus output on sensory-evoked responses of ventral posterior medial thalamic and barrel field cortical neurons in the awake rat.
    Devilbiss DM; Waterhouse BD
    J Neurosci; 2004 Dec; 24(48):10773-85. PubMed ID: 15574728
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phasic activation of the locus coeruleus enhances responses of primary sensory cortical neurons to peripheral receptive field stimulation.
    Waterhouse BD; Moises HC; Woodward DJ
    Brain Res; 1998 Apr; 790(1-2):33-44. PubMed ID: 9593812
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phasic and tonic patterns of locus coeruleus output differentially modulate sensory network function in the awake rat.
    Devilbiss DM; Waterhouse BD
    J Neurophysiol; 2011 Jan; 105(1):69-87. PubMed ID: 20980542
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Corticotropin-releasing factor acting at the locus coeruleus disrupts thalamic and cortical sensory-evoked responses.
    Devilbiss DM; Waterhouse BD; Berridge CW; Valentino R
    Neuropsychopharmacology; 2012 Aug; 37(9):2020-30. PubMed ID: 22510725
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential effects of ascending neurons containing dopamine and noradrenaline in the control of spontaneous activity and of evoked responses in the rat prefrontal cortex.
    Mantz J; Milla C; Glowinski J; Thierry AM
    Neuroscience; 1988 Nov; 27(2):517-26. PubMed ID: 3146033
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extracellular characteristics of putative cholinergic neurons in the rat laterodorsal tegmental nucleus.
    Grant SJ; Highfield DA
    Brain Res; 1991 Sep; 559(1):64-74. PubMed ID: 1782561
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Systemically administered cocaine alters stimulus-evoked responses of thalamic somatosensory neurons to perithreshold vibrissae stimulation.
    Rutter JJ; Baumann MH; Waterhouse BD
    Brain Res; 1998 Jul; 798(1-2):7-17. PubMed ID: 9666059
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simulation of signal flow in 3D reconstructions of an anatomically realistic neural network in rat vibrissal cortex.
    Lang S; Dercksen VJ; Sakmann B; Oberlaender M
    Neural Netw; 2011 Nov; 24(9):998-1011. PubMed ID: 21775101
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Locus ceruleus regulates sensory encoding by neurons and networks in waking animals.
    Devilbiss DM; Page ME; Waterhouse BD
    J Neurosci; 2006 Sep; 26(39):9860-72. PubMed ID: 17005850
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploring spike transfer through the thalamus using hybrid artificial-biological neuronal networks.
    Debay D; Wolfart J; Le Franc Y; Le Masson G; Bal T
    J Physiol Paris; 2004; 98(4-6):540-58. PubMed ID: 16289755
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Noradrenergic activation amplifies bottom-up and top-down signal-to-noise ratios in sensory thalamus.
    Hirata A; Aguilar J; Castro-Alamancos MA
    J Neurosci; 2006 Apr; 26(16):4426-36. PubMed ID: 16624962
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neuronal mechanisms mediating the variability of somatosensory evoked potentials during sleep oscillations in cats.
    Rosanova M; Timofeev I
    J Physiol; 2005 Jan; 562(Pt 2):569-82. PubMed ID: 15528249
    [TBL] [Abstract][Full Text] [Related]  

  • 14. State-related modulation of thalamic somatosensory responses in the awake monkey.
    Morrow TJ; Casey KL
    J Neurophysiol; 1992 Feb; 67(2):305-17. PubMed ID: 1569463
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of repeated 3,4-methylenedioxymethamphetamine administration on neurotransmitter efflux and sensory-evoked discharge in the ventral posterior medial thalamus.
    Starr MA; Page ME; Waterhouse BD
    J Pharmacol Exp Ther; 2012 Jan; 340(1):73-82. PubMed ID: 21984836
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Methylphenidate enhances noradrenergic transmission and suppresses mid- and long-latency sensory responses in the primary somatosensory cortex of awake rats.
    Drouin C; Page M; Waterhouse B
    J Neurophysiol; 2006 Aug; 96(2):622-32. PubMed ID: 16687613
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Properties of primary sensory (lemniscal) synapses in the ventrobasal thalamus and the relay of high-frequency sensory inputs.
    Castro-Alamancos MA
    J Neurophysiol; 2002 Feb; 87(2):946-53. PubMed ID: 11826059
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nociceptive stimulation activates locus coeruleus neurones projecting to the somatosensory thalamus in the rat.
    Voisin DL; Guy N; Chalus M; Dallel R
    J Physiol; 2005 Aug; 566(Pt 3):929-37. PubMed ID: 15905214
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Response sensitivity of barrel neuron subpopulations to simulated thalamic input.
    Pesavento MJ; Rittenhouse CD; Pinto DJ
    J Neurophysiol; 2010 Jun; 103(6):3001-16. PubMed ID: 20375248
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of intracerebroventricular corticotropin releasing factor on sensory-evoked responses in the rat visual thalamus.
    Zitnik GA; Clark BD; Waterhouse BD
    Brain Res; 2014 May; 1561():35-47. PubMed ID: 24661913
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.