These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Numerical calculation of the electroosmotic flow at the cross region in microfluidic chips. Jin Y; Luo GA Electrophoresis; 2003 Apr; 24(7-8):1242-52. PubMed ID: 12707918 [TBL] [Abstract][Full Text] [Related]
5. Application of the synthetic jet concept to low Reynolds number biosensor microfluidic flows for enhanced mixing: a numerical study using the lattice Boltzmann method. Mautner T Biosens Bioelectron; 2004 Jun; 19(11):1409-19. PubMed ID: 15093212 [TBL] [Abstract][Full Text] [Related]
6. Comments on the conditions for similitude in electroosmotic flows. Santiago JG J Colloid Interface Sci; 2007 Jun; 310(2):675-7. PubMed ID: 17350645 [TBL] [Abstract][Full Text] [Related]
7. Conditions for similitude between the fluid velocity and electric field in electroosmotic flow. Cummings EB; Griffiths SK; Nilson RH; Paul PH Anal Chem; 2000 Jun; 72(11):2526-32. PubMed ID: 10857630 [TBL] [Abstract][Full Text] [Related]
8. Electroosmotic flow and particle transport in micro/nano nozzles and diffusers. Chen L; Conlisk AT Biomed Microdevices; 2008 Apr; 10(2):289-98. PubMed ID: 18034305 [TBL] [Abstract][Full Text] [Related]
9. Electroosmotic flow in microchannels with arbitrary geometry and arbitrary distribution of wall charge. Xuan X; Li D J Colloid Interface Sci; 2005 Sep; 289(1):291-303. PubMed ID: 16009236 [TBL] [Abstract][Full Text] [Related]
10. Helmholtz-Smoluchowski velocity for viscoelastic electroosmotic flows. Park HM; Lee WM J Colloid Interface Sci; 2008 Jan; 317(2):631-6. PubMed ID: 17935728 [TBL] [Abstract][Full Text] [Related]
11. Numerical analysis of field-modulated electroosmotic flows in microchannels with arbitrary numbers and configurations of discrete electrodes. Chao K; Chen B; Wu J Biomed Microdevices; 2010 Dec; 12(6):959-66. PubMed ID: 20668948 [TBL] [Abstract][Full Text] [Related]
12. Analytical solution of time periodic electroosmotic flows: analogies to Stokes' second problem. Duttat P; Beskok A Anal Chem; 2001 Nov; 73(21):5097-102. PubMed ID: 11721905 [TBL] [Abstract][Full Text] [Related]
13. Vorticity dynamics and sound generation in two-dimensional fluid flow. Nagem RJ; Sandri G; Uminsky D J Acoust Soc Am; 2007 Jul; 122(1):128-34. PubMed ID: 17614472 [TBL] [Abstract][Full Text] [Related]
14. Flow behavior of periodical electroosmosis in microchannel for biochips. Wang X; Wu J J Colloid Interface Sci; 2006 Jan; 293(2):483-8. PubMed ID: 16061240 [TBL] [Abstract][Full Text] [Related]
15. The Debye-Hückel approximation: its use in describing electroosmotic flow in micro- and nanochannels. Conlisk AT Electrophoresis; 2005 May; 26(10):1896-912. PubMed ID: 15832301 [TBL] [Abstract][Full Text] [Related]
16. Dynamic interfacial effect of electroosmotic slip flow with a moving capillary front in hydrophobic circular microchannels. Yang J; Lu F; Kwok DY J Chem Phys; 2004 Oct; 121(15):7443-8. PubMed ID: 15473818 [TBL] [Abstract][Full Text] [Related]
17. Control of particle-deposition pattern in a sessile droplet by using radial electroosmotic flow. Kim SJ; Kang KH; Lee JG; Kang IS; Yoon BJ Anal Chem; 2006 Jul; 78(14):5192-7. PubMed ID: 16841947 [TBL] [Abstract][Full Text] [Related]
18. Study on the wind field and pollutant dispersion in street canyons using a stable numerical method. Xia JY; Leung DY J Environ Sci (China); 2005; 17(3):488-90. PubMed ID: 16083131 [TBL] [Abstract][Full Text] [Related]
19. The efficiency of electrokinetic pumping at a condition of maximum work. Griffiths SK; Nilson RH Electrophoresis; 2005 Jan; 26(2):351-61. PubMed ID: 15657883 [TBL] [Abstract][Full Text] [Related]
20. Effect of nonuniform surface potential on electroosmotic flow at large applied electric field strength. Chen L; Conlisk AT Biomed Microdevices; 2009 Feb; 11(1):251-8. PubMed ID: 18850273 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]